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Abstract

We examine how susceptible jobs are to computerisation. To as-

sess this, we begin by implementing a novel methodology to estimate

the probability of computerisation for 702 detailed occupations, using a

Gaussian process classifier. Based on these estimates, we examine ex-

pected impacts of future computerisation on US labour market outcomes,

with the primary objective of analysing the number of jobs at risk and

the relationship between an occupation’s probability of computerisation,

wages and educational attainment. According to our estimates, about 47

percent of total US employment is at risk. We further provide evidence

that wages and educational attainment exhibit a strong negative relation-

ship with an occupation’s probability of computerisation.
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I. INTRODUCTION

In this paper, we address the question: how susceptible are jobs to computerisa-

tion? Doing so, we build on the existing literature in two ways. First, drawing

upon recent advances in Machine Learning (ML) and Mobile Robotics (MR),

we develop a novel methodology to categorise occupations according to their

susceptibility to computerisation.1 Second, we implement this methodology to

estimate the probability of computerisation for 702 detailed occupations, and

examine expected impacts of future computerisation on US labour market out-

comes.

Our paper is motivated by John Maynard Keynes’s frequently cited pre-

diction of widespread technological unemployment “due to our discovery of

means of economising the use of labour outrunning the pace at which we

can find new uses for labour” (Keynes, 1933, p. 3). Indeed, over the past

decades, computers have substituted for a number of jobs, including the func-

tions of bookkeepers, cashiers and telephone operators (Bresnahan, 1999; MGI,

2013). More recently, the poor performance of labour markets across advanced

economies has intensified the debate about technological unemployment among

economists. While there is ongoing disagreement about the driving forces

behind the persistently high unemployment rates, a number of scholars have

pointed at computer-controlled equipment as a possible explanation for recent

jobless growth (see, for example, Brynjolfsson and McAfee, 2011).2

The impact of computerisation on labour market outcomes is well-established

in the literature, documenting the decline of employment in routine intensive

occupations – i.e. occupations mainly consisting of tasks following well-defined

procedures that can easily be performed by sophisticated algorithms. For exam-

ple, studies by Charles, et al. (2013) and Jaimovich and Siu (2012) emphasise

that the ongoing decline in manufacturing employment and the disappearance

of other routine jobs is causing the current low rates of employment.3 In ad-

1We refer to computerisation as job automation by means of computer-controlled equip-
ment.

2This view finds support in a recent survey by the McKinsey Global Institute (MGI), showing
that 44 percent of firms which reduced their headcount since the financial crisis of 2008 had
done so by means of automation (MGI, 2011).

3Because the core job tasks of manufacturing occupations follow well-defined repetitive
procedures, they can easily be codified in computer software and thus performed by computers
(Acemoglu and Autor, 2011).
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dition to the computerisation of routine manufacturing tasks, Autor and Dorn

(2013) document a structural shift in the labour market, with workers reallo-

cating their labour supply from middle-income manufacturing to low-income

service occupations. Arguably, this is because the manual tasks of service occu-

pations are less susceptible to computerisation, as they require a higher degree

of flexibility and physical adaptability (Autor, et al., 2003; Goos and Manning,

2007; Autor and Dorn, 2013).

At the same time, with falling prices of computing, problem-solving skills

are becoming relatively productive, explaining the substantial employment growth

in occupations involving cognitive tasks where skilled labour has a comparative

advantage, as well as the persistent increase in returns to education (Katz and

Murphy, 1992; Acemoglu, 2002; Autor and Dorn, 2013). The title “Lousy and

Lovely Jobs”, of recent work by Goos and Manning (2007), thus captures the

essence of the current trend towards labour market polarization, with growing

employment in high-income cognitive jobs and low-income manual occupa-

tions, accompanied by a hollowing-out of middle-income routine jobs.

According to Brynjolfsson and McAfee (2011), the pace of technologi-

cal innovation is still increasing, with more sophisticated software technolo-

gies disrupting labour markets by making workers redundant. What is striking

about the examples in their book is that computerisation is no longer confined

to routine manufacturing tasks. The autonomous driverless cars, developed by

Google, provide one example of how manual tasks in transport and logistics

may soon be automated. In the section “In Domain After Domain, Comput-

ers Race Ahead”, they emphasise how fast moving these developments have

been. Less than ten years ago, in the chapter “Why People Still Matter”, Levy

and Murnane (2004) pointed at the difficulties of replicating human perception,

asserting that driving in traffic is insusceptible to automation: “But execut-

ing a left turn against oncoming traffic involves so many factors that it is hard

to imagine discovering the set of rules that can replicate a driver’s behaviour

[. . . ]”. Six years later, in October 2010, Google announced that it had modi-

fied several Toyota Priuses to be fully autonomous (Brynjolfsson and McAfee,

2011).

To our knowledge, no study has yet quantified what recent technological

progress is likely to mean for the future of employment. The present study

intends to bridge this gap in the literature. Although there are indeed existing
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useful frameworks for examining the impact of computers on the occupational

employment composition, they seem inadequate in explaining the impact of

technological trends going beyond the computerisation of routine tasks. Semi-

nal work by Autor, et al. (2003), for example, distinguishes between cognitive

and manual tasks on the one hand, and routine and non-routine tasks on the

other. While the computer substitution for both cognitive and manual routine

tasks is evident, non-routine tasks involve everything from legal writing, truck

driving and medical diagnoses, to persuading and selling. In the present study,

we will argue that legal writing and truck driving will soon be automated, while

persuading, for instance, will not. Drawing upon recent developments in En-

gineering Sciences, and in particular advances in the fields of ML, including

Data Mining, Machine Vision, Computational Statistics and other sub-fields of

Artificial Intelligence, as well as MR, we derive additional dimensions required

to understand the susceptibility of jobs to computerisation. Needless to say,

a number of factors are driving decisions to automate and we cannot capture

these in full. Rather we aim, from a technological capabilities point of view,

to determine which problems engineers need to solve for specific occupations

to be automated. By highlighting these problems, their difficulty and to which

occupations they relate, we categorise jobs according to their susceptibility to

computerisation. The characteristics of these problems were matched to dif-

ferent occupational characteristics, using O∗NET data, allowing us to examine

the future direction of technological change in terms of its impact on the occu-

pational composition of the labour market, but also the number of jobs at risk

should these technologies materialise.

The present study relates to two literatures. First, our analysis builds on the

labour economics literature on the task content of employment (Autor, et al.,

2003; Goos and Manning, 2007; Autor and Dorn, 2013). Based on defined

premises about what computers do, this literature examines the historical im-

pact of computerisation on the occupational composition of the labour mar-

ket. However, the scope of what computers do has recently expanded, and will

inevitably continue to do so (Brynjolfsson and McAfee, 2011; MGI, 2013).

Drawing upon recent progress in ML, we expand the premises about the tasks

computers are and will be suited to accomplish. Doing so, we build on the task

content literature in a forward-looking manner. Furthermore, whereas this liter-

ature has largely focused on task measures from the Dictionary of Occupational
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Titles (DOT), last revised in 1991, we rely on the 2010 version of the DOT suc-

cessor O∗NET – an online service developed for the US Department of Labor.4

Accordingly, O∗NET has the advantage of providing more recent information

on occupational work activities.

Second, our study relates to the literature examining the offshoring of inf-

ormation-based tasks to foreign worksites (Jensen and Kletzer, 2005; Blinder,

2009; Jensen and Kletzer, 2010; Oldenski, 2012; Blinder and Krueger, 2013).

This literature consists of different methodologies to rank and categorise oc-

cupations according to their susceptibility to offshoring. For example, using

O∗NET data on the nature of work done in different occupations, Blinder (2009)

estimates that 22 to 29 percent of US jobs are or will be offshorable in the next

decade or two. These estimates are based on two defining characteristics of jobs

that cannot be offshored: (a) the job must be performed at a specific work loca-

tion; and (b) the job requires face-to-face personal communication. Naturally,

the characteristics of occupations that can be offshored are different from the

characteristics of occupations that can be automated. For example, the work of

cashiers, which has largely been substituted by self- service technology, must

be performed at specific work location and requires face-to-face contact. The

extent of computerisation is therefore likely to go beyond that of offshoring.

Hence, while the implementation of our methodology is similar to that of Blin-

der (2009), we rely on different occupational characteristics.

The remainder of this paper is structured as follows. In Section II, we review

the literature on the historical relationship between technological progress and

employment. Section III describes recent and expected future technological

developments. In Section IV, we describe our methodology, and in Section V,

we examine the expected impact of these technological developments on labour

market outcomes. Finally, in Section VI, we derive some conclusions.

II. A HISTORY OF TECHNOLOGICAL REVOLUTIONS AND EMPLOYMENT

The concern over technological unemployment is hardly a recent phenomenon.

Throughout history, the process of creative destruction, following technolog-

ical inventions, has created enormous wealth, but also undesired disruptions.

As stressed by Schumpeter (1962), it was not the lack of inventive ideas that

4An exception is Goos, et al. (2009).
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set the boundaries for economic development, but rather powerful social and

economic interests promoting the technological status quo. This is nicely il-

lustrated by the example of William Lee, inventing the stocking frame knitting

machine in 1589, hoping that it would relieve workers of hand-knitting. Seek-

ing patent protection for his invention, he travelled to London where he had

rented a building for his machine to be viewed by Queen Elizabeth I. To his

disappointment, the Queen was more concerned with the employment impact

of his invention and refused to grant him a patent, claiming that: “Thou aimest

high, Master Lee. Consider thou what the invention could do to my poor sub-

jects. It would assuredly bring to them ruin by depriving them of employment,

thus making them beggars” (cited in Acemoglu and Robinson, 2012, p. 182f).

Most likely the Queen’s concern was a manifestation of the hosiers’ guilds fear

that the invention would make the skills of its artisan members obsolete.5 The

guilds’ opposition was indeed so intense that William Lee had to leave Britain.

That guilds systematically tried to weaken market forces as aggregators to

maintain the technological status quo is persuasively argued by Kellenbenz

(1974, p. 243), stating that “guilds defended the interests of their members

against outsiders, and these included the inventors who, with their new equip-

ment and techniques, threatened to disturb their members’ economic status.”6

As pointed out by Mokyr (1998, p. 11): “Unless all individuals accept the

“verdict” of the market outcome, the decision whether to adopt an innovation

is likely to be resisted by losers through non-market mechanism and political

activism.” Workers can thus be expected to resist new technologies, insofar that

they make their skills obsolete and irreversibly reduce their expected earnings.

The balance between job conservation and technological progress therefore, to

a large extent, reflects the balance of power in society, and how gains from

technological progress are being distributed.

The British Industrial Revolution illustrates this point vividly. While still

widely present on the Continent, the craft guild in Britain had, by the time of

5The term artisan refers to a craftsman who engages in the entire production process of a
good, containing almost no division of labour. By guild we mean an association of artisans that
control the practice of their craft in a particular town.

6There is an ongoing debate about the technological role of the guilds. Epstein (1998), for
example, has argued that they fulfilled an important role in the intergenerational transmission of
knowledge. Yet there is no immediate contradiction between such a role and their conservative
stand on technological progress: there are clear examples of guilds restraining the diffusion of
inventions (see, for example, Ogilvie, 2004).
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the Glorious Revolution of 1688, declined and lost most of its political clout

(Nef, 1957, pp. 26 and 32). With Parliamentary supremacy established over

the Crown, legislation was passed in 1769 making the destruction of machinery

punishable by death (Mokyr, 1990, p. 257). To be sure, there was still resistance

to mechanisation. The “Luddite” riots between 1811 and 1816 were partly a

manifestation of the fear of technological change among workers as Parliament

revoked a 1551 law prohibiting the use of gig mills in the wool-finishing trade.

The British government however took an increasingly stern view on groups

attempting to halt technological progress and deployed 12,000 men against the

rioters (Mantoux, 2006, p. 403-8). The sentiment of the government towards

the destruction of machinery was explained by a resolution passed after the

Lancashire riots of 1779, stating that: “The sole cause of great riots was the

new machines employed in cotton manufacture; the country notwithstanding

has greatly benefited from their erection [and] destroying them in this country

would only be the means of transferring them to another [. . . ] to the detriment

of the trade of Britain” (cited in Mantoux, 2006, p. 403).

There are at least two possible explanations for the shift in attitudes towards

technological progress. First, after Parliamentary supremacy was established

over the Crown, the property owning classes became politically dominant in

Britain (North and Weingast, 1989). Because the diffusion of various manufac-

turing technologies did not impose a risk to the value of their assets, and some

property owners stood to benefit from the export of manufactured goods, the

artisans simply did not have the political power to repress them. Second, in-

ventors, consumers and unskilled factory workers largely benefited from mech-

anisation (Mokyr, 1990, p. 256 and 258). It has even been argued that, despite

the employment concerns over mechanisation, unskilled workers have been the

greatest beneficiaries of the Industrial Revolution (Clark, 2008).7 While there

7Various estimations of the living standards of workers in Britain during the industrialisation
exist in the literature. For example, Clark (2008) finds that real wages over the period 1760 to
1860 rose faster than GDP per capita. Further evidence provided by Lindert and Williamson
(1983) even suggests that real wages nearly doubled between 1820 and 1850. Feinstein (1998),
on the other hand, finds a much more moderate increase, with average working-class living
standards improving by less than 15 percent between 1770 and 1870. Finally, Allen (2009a)
finds that over the first half of the nineteenth century, the real wage stagnated while output per
worker expanded. After the mid nineteenth century, however, real wages began to grow in line
with productivity. While this implies that capital owners were the greatest beneficiaries of the
Industrial Revolution, there is at the same time consensus that average living standards largely
improved.
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is contradictory evidence suggesting that capital owners initially accumulated

a growing share of national income (Allen, 2009a), there is equally evidence

of growing real wages (Lindert and Williamson, 1983; Feinstein, 1998). This

implies that although manufacturing technologies made the skills of artisans

obsolete, gains from technological progress were distributed in a manner that

gradually benefited a growing share of the labour force.8

An important feature of nineteenth century manufacturing technologies is

that they were largely “deskilling” – i.e. they substituted for skills through the

simplification of tasks (Braverman, 1974; Hounshell, 1985; James and Skinner,

1985; Goldin and Katz, 1998). The deskilling process occurred as the factory

system began to displace the artisan shop, and it picked up pace as produc-

tion increasingly mechanized with the adoption of steam power (Goldin and

Sokoloff, 1982; Atack, et al., 2008a). Work that had previously been performed

by artisans was now decomposed into smaller, highly specialised, sequences,

requiring less skill, but more workers, to perform.9 Some innovations were

even designed to be deskilling. For example, Eli Whitney, a pioneer of inter-

changeable parts, described the objective of this technology as “to substitute

correct and effective operations of machinery for the skill of the artist which is

acquired only by long practice and experience; a species of skill which is not

possessed in this country to any considerable extent” (Habakkuk, 1962, p. 22).

Together with developments in continuous-flow production, enabling work-

ers to be stationary while different tasks were moved to them, it was identical in-

terchangeable parts that allowed complex products to be assembled from mass

produced individual components by using highly specialised machine tools to

8The term skill is associated with higher levels of education, ability, or job training. Follow-
ing Goldin and Katz (1998), we refer to technology-skill or capital-skill complementarity when
a new technology or physical capital complements skilled labour relative to unskilled workers.

9The production of plows nicely illustrates the differences between the artisan shop and the
factory. In one artisan shop, two men spent 118 man-hours using hammers, anvils, chisels,
hatchets, axes, mallets, shaves and augers in 11 distinct operations to produce a plow. By
contrast, a mechanized plow factory employed 52 workers performing 97 distinct tasks, of
which 72 were assisted by steam power, to produce a plow in just 3.75 man-hours. The degree
of specialization was even greater in the production of men’s white muslin shirts. In the artisan
shop, one worker spent 1439 hours performing 25 different tasks to produce 144 shirts. In the
factory, it took 188 man-hours to produce the same quantity, engaging 230 different workers
performing 39 different tasks, of which more than half required steam power. The workers
involved included cutters, turners and trimmers, as well as foremen and forewomen, inspectors,
errand boys, an engineer, a fireman, and a watchman (US Department of Labor, 1899).
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a sequence of operations.10 Yet while the first assembly-line was documented

in 1804, it was not until the late nineteenth century that continuous-flow pro-

cesses started to be adopted on a larger scale, which enabled corporations such

as the Ford Motor Company to manufacture the T-Ford at a sufficiently low

price for it to become the people’s vehicle (Mokyr, 1990, p. 137). Crucially,

the new assembly line introduced by Ford in 1913 was specifically designed for

machinery to be operated by unskilled workers (Hounshell, 1985, p. 239). Fur-

thermore, what had previously been a one-man job was turned into a 29-man

worker operation, reducing the overall work time by 34 percent (Bright, 1958).

The example of the Ford Motor Company thus underlines the general pattern

observed in the nineteenth century, with physical capital providing a relative

complement to unskilled labour, while substituting for relatively skilled arti-

sans (James and Skinner, 1985; Louis and Paterson, 1986; Brown and Philips,

1986; Atack, et al., 2004).11 Hence, as pointed out by Acemoglu (2002, p. 7):

“the idea that technological advances favor more skilled workers is a twentieth

century phenomenon.” The conventional wisdom among economic historians,

in other words, suggests a discontinuity between the nineteenth and twentieth

century in the impact of capital deepening on the relative demand for skilled

labour.

The modern pattern of capital-skill complementarity gradually emerged in

the late nineteenth century, as manufacturing production shifted to increasingly

mechanised assembly lines. This shift can be traced to the switch to electricity

from steam and water-power which, in combination with continuous-process

10These machines were sequentially implemented until the production process was com-
pleted. Over time, such machines became much cheaper relative to skilled labor. As a result,
production became much more capital intensive (Hounshell, 1985).

11Williamson and Lindert (1980), on the other hand, find a relative rise in wage premium of
skilled labour over the period 1820 to 1860, which they partly attribute to capital deepening.
Their claim of growing wage inequality over this period has, however, been challenged (Margo,
2000). Yet seen over the long-run, a more refined explanation is that the manufacturing share
of the labour force in the nineteenth century hollowed out. This is suggested by recent findings,
revealing a decline of middle-skill artisan jobs in favour of both high-skill white collar workers
and low-skill operatives (Gray, 2013; Katz and Margo, 2013). Furthermore, even if the share
of operatives was increasing due to organizational change within manufacturing and overall
manufacturing growth, it does not follow that the share of unskilled labor was rising in the
aggregate economy, because some of the growth in the share of operatives may have come
at the expense of a decrease in the share of workers employed as low-skilled farm workers in
agriculture (Katz and Margo, 2013). Nevertheless, this evidence is consistent with the literature
showing that relatively skilled artisans were replaced by unskilled factory workers, suggesting
that technological change in manufacturing was deskilling.
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and batch production methods, reduced the demand for unskilled manual work-

ers in many hauling, conveying, and assembly tasks, but increased the demand

for skills (Goldin and Katz, 1998). In short, while factory assembly lines, with

their extreme division of labour, had required vast quantities of human opera-

tives, electrification allowed many stages of the production process to be au-

tomated, which in turn increased the demand for relatively skilled blue-collar

production workers to operate the machinery. In addition, electrification con-

tributed to a growing share of white-collar nonproduction workers (Goldin and

Katz, 1998). Over the course of the nineteenth century, establishments became

larger in size as steam and water power technologies improved, allowing them

to adopt powered machinery to realize productivity gains through the combina-

tion of enhanced division of labour and higher capital intensity (Atack, et al.,

2008a). Furthermore, the transport revolution lowered costs of shipping goods

domestically and internationally as infrastructure spread and improved (Atack,

et al., 2008b). The market for artisan goods early on had largely been confined

to the immediate surrounding area because transport costs were high relative to

the value of the goods produced. With the transport revolution, however, market

size expanded, thereby eroding local monopoly power, which in turn increased

competition and compelled firms to raise productivity through mechanisation.

As establishments became larger and served geographically expended markets,

managerial tasks increased in number and complexity, requiring more manage-

rial and clerking employees (Chandler, 1977). This pattern was, by the turn of

the twentieth century, reinforced by electrification, which not only contributed

to a growing share of relatively skilled blue-collar labour, but also increased the

demand for white-collar workers (Goldin and Katz, 1998), who tended to have

higher educational attainment (Allen, 2001).12

Since electrification, the story of the twentieth century has been the race be-

tween education and technology (Goldin and Katz, 2009). The US high school

movement coincided with the first industrial revolution of the office (Goldin

and Katz, 1995). While the typewriter was invented in the 1860s, it was not in-

troduced in the office until the early twentieth century, when it entered a wave

12Most likely, the growing share of white-collar workers increased the element of human
interaction in employment. Notably, Michaels, et al. (2013) find that the increase in the em-
ployment share of interactive occupations, going hand in hand with an increase in their relative
wage bill share, was particularly strong between 1880 and 1930, which is a period of rapid
change in communication and transport technology.
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of mechanisation, with dictaphones, calculators, mimeo machines, address ma-

chines, and the predecessor of the computer – the keypunch (Beniger, 1986;

Cortada, 2000). Importantly, these office machines reduced the cost of inform-

ation processing tasks and increased the demand for the complementary factor –

i.e. educated office workers. Yet the increased supply of educated office work-

ers, following the high school movement, was associated with a sharp decline

in the wage premium of clerking occupations relative to production workers

(Goldin and Katz, 1995). This was, however, not the result of deskilling tech-

nological change. Clerking workers were indeed relatively educated. Rather, it

was the result of the supply of educated workers outpacing the demand for their

skills, leading educational wage differentials to compress.

While educational wage differentials in the US narrowed from 1915 to 1980

(Goldin and Katz, 2009), both educational wage differentials and overall wage

inequality have increased sharply since the 1980s in a number of countries

(Krueger, 1993; Murphy, et al., 1998; Atkinson, 2008; Goldin and Katz, 2009).

Although there are clearly several variables at work, consensus is broad that

this can be ascribed to an acceleration in capital-skill complementarity, driven

by the adoption of computers and information technology (Krueger, 1993; Au-

tor, et al., 1998; Bresnahan, et al., 2002). What is commonly referred to as the

Computer Revolution began with the first commercial uses of computers around

1960 and continued through the development of the Internet and e-commerce

in the 1990s. As the cost per computation declined at an annual average of 37

percent between 1945 and 1980 (Nordhaus, 2007), telephone operators were

made redundant, the first industrial robot was introduced by General Motors

in the 1960s, and in the 1970s airline reservations systems led the way in self-

service technology (Gordon, 2012). During the 1980s and 1990s, computing

costs declined even more rapidly, on average by 64 percent per year, accompa-

nied by a surge in computational power (Nordhaus, 2007).13 At the same time,

bar-code scanners and cash machines were spreading across the retail and fi-

nancial industries, and the first personal computers were introduced in the early

1980s, with their word processing and spreadsheet functions eliminating copy

typist occupations and allowing repetitive calculations to be automated (Gor-

don, 2012). This substitution for labour marks a further important reversal.

13Computer power even increased 18 percent faster on annual basis than predicted by
Moore’s Law, implying a doubling every two years (Nordhaus, 2007).
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The early twentieth century office machines increased the demand for clerking

workers (Chandler, 1977; Goldin and Katz, 1995). In a similar manner, com-

puterisation augments demand for such tasks, but it also permits them to be

automated (Autor, et al., 2003).

The Computer Revolution can go some way in explaining the growing wage

inequality of the past decades. For example, Krueger (1993) finds that work-

ers using a computer earn roughly earn 10 to 15 percent more than others, but

also that computer use accounts for a substantial share of the increase in the

rate of return to education. In addition, more recent studies find that computers

have caused a shift in the occupational structure of the labour market. Autor

and Dorn (2013), for example, show that as computerisation erodes wages for

labour performing routine tasks, workers will reallocate their labour supply to

relatively low-skill service occupations. More specifically, between 1980 and

2005, the share of US labour hours in service occupations grew by 30 percent

after having been flat or declining in the three prior decades. Furthermore, net

changes in US employment were U-shaped in skill level, meaning that the low-

est and highest job-skill quartile expanded sharply with relative employment

declines in the middle of the distribution.

The expansion in high-skill employment can be explained by the falling

price of carrying out routine tasks by means of computers, which complements

more abstract and creative services. Seen from a production function perspec-

tive, an outward shift in the supply of routine informational inputs increases the

marginal productivity of workers they are demanded by. For example, text and

data mining has improved the quality of legal research as constant access to

market information has improved the efficiency of managerial decision-making

– i.e. tasks performed by skilled workers at the higher end of the income dis-

tribution. The result has been an increasingly polarised labour market, with

growing employment in high-income cognitive jobs and low-income manual

occupations, accompanied by a hollowing-out of middle-income routine jobs.

This is a pattern that is not unique to the US and equally applies to a number of

developed economies (Goos, et al., 2009).14

14While there is broad consensus that computers substituting for workers in routine-intensive
tasks has driven labour market polarisation over the past decades, there are, indeed, alternative
explanations. For example, technological advances in computing have dramatically lowered the
cost of leaving information-based tasks to foreign worksites (Jensen and Kletzer, 2005; Blinder,
2009; Jensen and Kletzer, 2010; Oldenski, 2012; Blinder and Krueger, 2013). The decline in
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How technological progress in the twenty-first century will impact on labour

market outcomes remains to be seen. Throughout history, technological progress

has vastly shifted the composition of employment, from agriculture and the

artisan shop, to manufacturing and clerking, to service and management oc-

cupations. Yet the concern over technological unemployment has proven to

be exaggerated. The obvious reason why this concern has not materialised

relates to Ricardo’s famous chapter on machinery, which suggests that labour-

saving technology reduces the demand for undifferentiated labour, thus leading

to technological unemployment (Ricardo, 1819). As economists have long un-

derstood, however, an invention that replaces workers by machines will have

effects on all product and factor markets. An increase in the efficiency of pro-

duction which reduces the price of one good, will increase real income and

thus increase demand for other goods. Hence, in short, technological progress

has two competing effects on employment (Aghion and Howitt, 1994). First, as

technology substitutes for labour, there is a destruction effect, requiring workers

to reallocate their labour supply; and second, there is the capitalisation effect, as

more companies enter industries where productivity is relatively high, leading

employment in those industries to expand.

Although the capitalisation effect has been predominant historically, our

discovery of means of economising the use of labour can outrun the pace at

which we can find new uses for labour, as Keynes (1933) pointed out. The rea-

son why human labour has prevailed relates to its ability to adopt and acquire

new skills by means of education (Goldin and Katz, 2009). Yet as computerisa-

tion enters more cognitive domains this will become increasingly challenging

(Brynjolfsson and McAfee, 2011). Recent empirical findings are therefore par-

ticularly concerning. For example, Beaudry, et al. (2013) document a decline

in the demand for skill over the past decade, even as the supply of workers with

higher education has continued to grow. They show that high-skilled work-

ers have moved down the occupational ladder, taking on jobs traditionally per-

formed by low-skilled workers, pushing low-skilled workers even further down

the occupational ladder and, to some extent, even out of the labour force. This

the routine-intensity of employment is thus likely to result from a combination of offshoring
and automation. Furthermore, there is evidence suggesting that improvements in transport and
communication technology have augmented occupations involving human interaction, span-
ning across both cognitive and manual tasks (Michaels, et al., 2013). These explanations are
nevertheless equally related to advance in computing and communications technology.
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raises questions about: (a) the ability of human labour to win the race against

technology by means of education; and (b) the potential extent of technologi-

cal unemployment, as an increasing pace of technological progress will cause

higher job turnover, resulting in a higher natural rate of unemployment (Lucas

and Prescott, 1974; Davis and Haltiwanger, 1992; Pissarides, 2000). While the

present study is limited to examining the destruction effect of technology, it

nevertheless provides a useful indication of the job growth required to counter-

balance the jobs at risk over the next decades.

III. THE TECHNOLOGICAL REVOLUTIONS OF THE TWENTY-FIRST CENTURY

The secular price decline in the real cost of computing has created vast eco-

nomic incentives for employers to substitute labour for computer capital.15 Yet

the tasks computers are able to perform ultimately depend upon the ability of

a programmer to write a set of procedures or rules that appropriately direct the

technology in each possible contingency. Computers will therefore be relatively

productive to human labour when a problem can be specified – in the sense that

the criteria for success are quantifiable and can readily be evaluated (Acemoglu

and Autor, 2011). The extent of job computerisation will thus be determined

by technological advances that allow engineering problems to be sufficiently

specified, which sets the boundaries for the scope of computerisation. In this

section, we examine the extent of tasks computer-controlled equipment can be

expected to perform over the next decades. Doing so, we focus on advances

in fields related to Machine Learning (ML), including Data Mining, Machine

Vision, Computational Statistics and other sub-fields of Artificial Intelligence

(AI), in which efforts are explicitly dedicated to the development of algorithms

that allow cognitive tasks to be automated. In addition, we examine the ap-

plication of ML technologies in Mobile Robotics (MR), and thus the extent of

computerisation in manual tasks.

Our analysis builds on the task categorisation of Autor, et al. (2003), which

distinguishes between workplace tasks using a two-by-two matrix, with routine

versus non-routine tasks on one axis, and manual versus cognitive tasks on the

other. In short, routine tasks are defined as tasks that follow explicit rules that

15We refer to computer capital as accumulated computers and computer-controlled equip-
ment by means of capital deepening.
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can be accomplished by machines, while non-routine tasks are not sufficiently

well understood to be specified in computer code. Each of these task cate-

gories can, in turn, be of either manual or cognitive nature – i.e. they relate to

physical labour or knowledge work. Historically, computerisation has largely

been confined to manual and cognitive routine tasks involving explicit rule-

based activities (Autor and Dorn, 2013; Goos, et al., 2009). Following recent

technological advances, however, computerisation is now spreading to domains

commonly defined as non-routine. The rapid pace at which tasks that were de-

fined as non-routine only a decade ago have now become computerisable is

illustrated by Autor, et al. (2003), asserting that: “Navigating a car through city

traffic or deciphering the scrawled handwriting on a personal check – minor

undertakings for most adults – are not routine tasks by our definition.” Today,

the problems of navigating a car and deciphering handwriting are sufficiently

well understood that many related tasks can be specified in computer code and

automated (Veres, et al., 2011; Plötz and Fink, 2009).

Recent technological breakthroughs are, in large part, due to efforts to turn

non-routine tasks into well-defined problems. Defining such problems is helped

by the provision of relevant data: this is highlighted in the case of handwriting

recognition by Plötz and Fink (2009). The success of an algorithm for hand-

writing recognition is difficult to quantify without data to test on – in particular,

determining whether an algorithm performs well for different styles of writ-

ing requires data containing a variety of such styles. That is, data is required

to specify the many contingencies a technology must manage in order to form

an adequate substitute for human labour. With data, objective and quantifiable

measures of the success of an algorithm can be produced, which aid the contin-

ual improvement of its performance relative to humans.

As such, technological progress has been aided by the recent production

of increasingly large and complex datasets, known as big data.16 For instance,

with a growing corpus of human-translated digitalised text, the success of a

machine translator can now be judged by its accuracy in reproducing observed

translations. Data from United Nations documents, which are translated by hu-

16Predictions by Cisco Systems suggest that the Internet traffic in 2016 will be around 1
zettabyte (1×10

21 bytes) (Cisco, 2012). In comparison, the information contained in all books
worldwide is about 480 terabytes (5 × 10

14 bytes), and a text transcript of all the words ever
spoken by humans would represent about 5 exabytes (5× 10

18 bytes) (UC Berkeley School of
Information, 2003).
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man experts into six languages, allow Google Translate to monitor and improve

the performance of different machine translation algorithms (Tanner, 2007).

Further, ML algorithms can discover unexpected similarities between old

and new data, aiding the computerisation of tasks for which big data has newly

become available. As a result, computerisation is no longer confined to rou-

tine tasks that can be written as rule-based software queries, but is spreading

to every non-routine task where big data becomes available (Brynjolfsson and

McAfee, 2011). In this section, we examine the extent of future computerisa-

tion beyond routine tasks.

III.A. Computerisation in non-routine cognitive tasks

With the availability of big data, a wide range of non-routine cognitive tasks

are becoming computerisable. That is, further to the general improvement in

technological progress due to big data, algorithms for big data are rapidly enter-

ing domains reliant upon storing or accessing information. The use of big data

is afforded by one of the chief comparative advantages of computers relative

to human labor: scalability. Little evidence is required to demonstrate that, in

performing the task of laborious computation, networks of machines scale bet-

ter than human labour (Campbell-Kelly, 2009). As such, computers can better

manage the large calculations required in using large datasets. ML algorithms

running on computers are now, in many cases, better able to detect patterns in

big data than humans.

Computerisation of cognitive tasks is also aided by another core compara-

tive advantage of algorithms: their absence of some human biases. An algo-

rithm can be designed to ruthlessly satisfy the small range of tasks it is given.

Humans, in contrast, must fulfill a range of tasks unrelated to their occupation,

such as sleeping, necessitating occasional sacrifices in their occupational per-

formance (Kahneman, et al., 1982). The additional constraints under which

humans must operate manifest themselves as biases. Consider an example of

human bias: Danziger, et al. (2011) demonstrate that experienced Israeli judges

are substantially more generous in their rulings following a lunch break. It can

thus be argued that many roles involving decision-making will benefit from

impartial algorithmic solutions.

Fraud detection is a task that requires both impartial decision making and

the ability to detect trends in big data. As such, this task is now almost com-
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pletely automated (Phua, et al., 2010). In a similar manner, the comparative

advantages of computers are likely to change the nature of work across a wide

range of industries and occupations.

In health care, diagnostics tasks are already being computerised. Oncolo-

gists at Memorial Sloan-Kettering Cancer Center are, for example, using IBM’s

Watson computer to provide chronic care and cancer treatment diagnostics.

Knowledge from 600,000 medical evidence reports, 1.5 million patient records

and clinical trials, and two million pages of text from medical journals, are used

for benchmarking and pattern recognition purposes. This allows the computer

to compare each patient’s individual symptoms, genetics, family and medica-

tion history, etc., to diagnose and develop a treatment plan with the highest

probability of success (Cohn, 2013).

In addition, computerisation is entering the domains of legal and financial

services. Sophisticated algorithms are gradually taking on a number of tasks

performed by paralegals, contract and patent lawyers (Markoff, 2011). More

specifically, law firms now rely on computers that can scan thousands of legal

briefs and precedents to assist in pre-trial research. A frequently cited exam-

ple is Symantec’s Clearwell system, which uses language analysis to identify

general concepts in documents, can present the results graphically, and proved

capable of analysing and sorting more than 570,000 documents in two days

(Markoff, 2011).

Furthermore, the improvement of sensing technology has made sensor data

one of the most prominent sources of big data (Ackerman and Guizzo, 2011).

Sensor data is often coupled with new ML fault- and anomaly-detection algo-

rithms to render many tasks computerisable. A broad class of examples can be

found in condition monitoring and novelty detection, with technology substi-

tuting for closed-circuit TV (CCTV) operators, workers examining equipment

defects, and clinical staff responsible for monitoring the state of patients in in-

tensive care. Here, the fact that computers lack human biases is of great value:

algorithms are free of irrational bias, and their vigilance need not be interrupted

by rest breaks or lapses of concentration. Following the declining costs of digi-

tal sensing and actuation, ML approaches have successfully addressed condition

monitoring applications ranging from batteries (Saha, et al., 2007), to aircraft

engines (King, et al., 2009), water quality (Osborne, et al., 2012) and intensive

care units (ICUs) (Clifford and Clifton, 2012; Clifton, et al., 2012). Sensors can
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equally be placed on trucks and pallets to improve companies’ supply chain

management, and used to measure the moisture in a field of crops to track the

flow of water through utility pipes. This allows for automatic meter reading,

eliminating the need for personnel to gather such information. For example,

the cities of Doha, São Paulo, and Beijing use sensors on pipes, pumps, and

other water infrastructure to monitor conditions and manage water loss, reduc-

ing leaks by 40 to 50 percent. In the near future, it will be possible to place inex-

pensive sensors on light poles, sidewalks, and other public property to capture

sound and images, likely reducing the number of workers in law enforcement

(MGI, 2013).

Advances in user interfaces also enable computers to respond directly to

a wider range of human requests, thus augmenting the work of highly skilled

labour, while allowing some types of jobs to become fully automated. For ex-

ample, Apple’s Siri and Google Now rely on natural user interfaces to recognise

spoken words, interpret their meanings, and act on them accordingly. More-

over, a company called SmartAction now provides call computerisation solu-

tions that use ML technology and advanced speech recognition to improve upon

conventional interactive voice response systems, realising cost savings of 60 to

80 percent over an outsourced call center consisting of human labour (CAA,

2012). Even education, one of the most labour intensive sectors, will most

likely be significantly impacted by improved user interfaces and algorithms

building upon big data. The recent growth in MOOCs (Massive Open Online

Courses) has begun to generate large datasets detailing how students interact

on forums, their diligence in completing assignments and viewing lectures, and

their ultimate grades (Simonite, 2013; Breslow, et al., 2013). Such information,

together with improved user interfaces, will allow for ML algorithms that serve

as interactive tutors, with teaching and assessment strategies statistically cali-

brated to match individual student needs (Woolf, 2010). Big data analysis will

also allow for more effective predictions of student performance, and for their

suitability for post-graduation occupations. These technologies can equally be

implemented in recruitment, most likely resulting in the streamlining of human

resource (HR) departments.

Occupations that require subtle judgement are also increasingly susceptible

to computerisation. To many such tasks, the unbiased decision making of an al-

gorithm represents a comparative advantage over human operators. In the most
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challenging or critical applications, as in ICUs, algorithmic recommendations

may serve as inputs to human operators; in other circumstances, algorithms

will themselves be responsible for appropriate decision-making. In the finan-

cial sector, such automated decision-making has played a role for quite some

time. AI algorithms are able to process a greater number of financial announce-

ments, press releases, and other information than any human trader, and then

act faster upon them (Mims, 2010). Services like Future Advisor similarly use

AI to offer personalised financial advice at larger scale and lower cost. Even

the work of software engineers may soon largely be computerisable. For ex-

ample, advances in ML allow a programmer to leave complex parameter and

design choices to be appropriately optimised by an algorithm (Hoos, 2012). Al-

gorithms can further automatically detect bugs in software (Hangal and Lam,

2002; Livshits and Zimmermann, 2005; Kim, et al., 2008), with a reliability

that humans are unlikely to match. Big databases of code also offer the eventual

prospect of algorithms that learn how to write programs to satisfy specifications

provided by a human. Such an approach is likely to eventually improve upon

human programmers, in the same way that human-written compilers eventually

proved inferior to automatically optimised compilers. An algorithm can bet-

ter keep the whole of a program in working memory, and is not constrained to

human-intelligible code, allowing for holistic solutions that might never occur

to a human. Such algorithmic improvements over human judgement are likely

to become increasingly common.

Although the extent of these developments remains to be seen, estimates by

MGI (2013) suggests that sophisticated algorithms could substitute for approx-

imately 140 million full-time knowledge workers worldwide. Hence, while

technological progress throughout economic history has largely been confined

to the mechanisation of manual tasks, requiring physical labour, technological

progress in the twenty-first century can be expected to contribute to a wide

range of cognitive tasks, which, until now, have largely remained a human

domain. Of course, many occupations being affected by these developments

are still far from fully computerisable, meaning that the computerisation of

some tasks will simply free-up time for human labour to perform other tasks.

Nonetheless, the trend is clear: computers increasingly challenge human labour

in a wide range of cognitive tasks (Brynjolfsson and McAfee, 2011).
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III.B. Computerisation in non-routine manual tasks

Mobile robotics provides a means of directly leveraging ML technologies to

aid the computerisation of a growing scope of manual tasks. The continued

technological development of robotic hardware is having notable impact upon

employment: over the past decades, industrial robots have taken on the rou-

tine tasks of most operatives in manufacturing. Now, however, more advanced

robots are gaining enhanced sensors and manipulators, allowing them to per-

form non-routine manual tasks. For example, General Electric has recently de-

veloped robots to climb and maintain wind turbines, and more flexible surgical

robots with a greater range of motion will soon perform more types of opera-

tions (Robotics-VO, 2013). In a similar manner, the computerisation of logis-

tics is being aided by the increasing cost-effectiveness of highly instrumented

and computerised cars. Mass-production vehicles, such as the Nissan LEAF,

contain on-board computers and advanced telecommunication equipment that

render the car a potentially fly-by-wire robot.17 Advances in sensor technol-

ogy mean that vehicles are likely to soon be augmented with even more ad-

vanced suites of sensors. These will permit an algorithmic vehicle controller to

monitor its environment to a degree that exceeds the capabilities of any human

driver: they have the ability to simultaneously look both forwards and back-

wards, can natively integrate camera, GPS and LIDAR data, and are not subject

to distraction. Algorithms are thus potentially safer and more effective drivers

than humans.

The big data provided by these improved sensors are offering solutions to

many of the engineering problems that had hindered robotic development in

the past. In particular, the creation of detailed three dimensional maps of road

networks has enabled autonomous vehicle navigation; most notably illustrated

by Google’s use of large, specialised datasets collected by its driverless cars

(Guizzo, 2011). It is now completely feasible to store representations of the

entire road network on-board a car, dramatically simplifying the navigation

problem. Algorithms that could perform navigation throughout the changing

seasons, particularly after snowfall, have been viewed as a substantial chal-

lenge. However, the big data approach can answer this by storing records from

the last time snow fell, against which the vehicle’s current environment can

17A fly-by-wire robot is a robot that is controllable by a remote computer.
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be compared (Churchill and Newman, 2012). ML approaches have also been

developed to identify unprecedented changes to a particular piece of the road

network, such as roadworks (Mathibela, et al., 2012). This emerging tech-

nology will affect a variety of logistics jobs. Agricultural vehicles, forklifts

and cargo-handling vehicles are imminently automatable, and hospitals are al-

ready employing autonomous robots to transport food, prescriptions and sam-

ples (Bloss, 2011). The computerisation of mining vehicles is further being

pursued by companies such as Rio Tinto, seeking to replace labour in Aus-

tralian mine-sites.18

With improved sensors, robots are capable of producing goods with higher

quality and reliability than human labour. For example, El Dulze, a Spanish

food processor, now uses robotics to pick up heads of lettuce from a con-

veyor belt, rejecting heads that do not comply with company standards. This

is achieved by measuring their density and replacing them on the belt (IFR,

2012a). Advanced sensors further allow robots to recognise patterns. Baxter, a

22,000 USD general-purpose robot, provides a well-known example. The robot

features an LCD display screen displaying a pair of eyes that take on differ-

ent expressions depending on the situation. When the robot is first installed or

needs to learn a new pattern, no programming is required. A human worker

simply guides the robot arms through the motions that will be needed for the

task. Baxter then memorises these patterns and can communicate that it has un-

derstood its new instructions. While the physical flexibility of Baxter is limited

to performing simple operations such as picking up objects and moving them,

different standard attachments can be installed on its arms, allowing Baxter to

perform a relatively broad scope of manual tasks at low cost (MGI, 2013).

Technological advances are contributing to declining costs in robotics. Over

the past decades, robot prices have fallen about 10 percent annually and are

expected to decline at an even faster pace in the near future (MGI, 2013). In-

dustrial robots, with features enabled by machine vision and high-precision

dexterity, which typically cost 100,000 to 150,000 USD, will be available for

50,000 to 75,000 USD in the next decade, with higher levels of intelligence

and additional capabilities (IFR, 2012b). Declining robot prices will inevitably

place them within reach of more users. For example, in China, employers are

18Rio Tinto’s computerisation efforts are advertised at http://www.mineofthefuture.com.au.

21



increasingly incentivised to substitute robots for labour, as wages and living

standards are rising – Foxconn, a Chinese contract manufacturer that employs

1.2 million workers, is now investing in robots to assemble products such as

the Apple iPhone (Markoff, 2012). According to the International Federation

of Robotics, robot sales in China grew by more than 50 percent in 2011 and are

expected to increase further. Globally, industrial robot sales reached a record

166,000 units in 2011, a 40 percent year-on-year increase (IFR, 2012b). Most

likely, there will be even faster growth ahead as low-priced general-purpose

models, such as Baxter, are adopted in simple manufacturing and service work.

Expanding technological capabilities and declining costs will make entirely

new uses for robots possible. Robots will likely continue to take on an increas-

ing set of manual tasks in manufacturing, packing, construction, maintenance,

and agriculture. In addition, robots are already performing many simple ser-

vice tasks such as vacuuming, mopping, lawn mowing, and gutter cleaning –

the market for personal and household service robots is growing by about 20

percent annually (MGI, 2013). Meanwhile, commercial service robots are now

able to perform more complex tasks in food preparation, health care, commer-

cial cleaning, and elderly care (Robotics-VO, 2013). As robot costs decline and

technological capabilities expand, robots can thus be expected to gradually sub-

stitute for labour in a wide range of low-wage service occupations, where most

US job growth has occurred over the past decades (Autor and Dorn, 2013). This

means that many low-wage manual jobs that have been previously protected

from computerisation could diminish over time.

III.C. The task model revisited

The task model of Autor, et al. (2003) has delivered intuitive and accurate

predictions in that: (a) computers are more substitutable for human labour in

routine relative to non-routine tasks; and (b) a greater intensity of routine in-

puts increases the marginal productivity of non-routine inputs. Accordingly,

computers have served as a substitute for labour for many routine tasks, while

exhibiting strong complementarities with labour performing cognitive non-rou-

tine tasks.19 Yet the premises about what computers do have recently expanded.

Computer capital can now equally substitute for a wide range of tasks com-

19The model does not predict any substantial substitution or complementarity with non-
routine manual tasks.
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monly defined as non-routine (Brynjolfsson and McAfee, 2011), meaning that

the task model will not hold in predicting the impact of computerisation on

the task content of employment in the twenty-first century. While focusing on

the substitution effects of recent technological progress, we build on the task

model by deriving several factors that we expect will determine the extent of

computerisation in non-routine tasks.

The task model assumes for tractability an aggregate, constant-returns-to-

scale, Cobb-Douglas production function of the form

(1) Q = (LS + C)1−βL
β
NS, β ∈ [0, 1],

where LS and LNS are susceptible and non-susceptible labor inputs and C is

computer capital. Computer capital is supplied perfectly elastically at market

price per efficiency unit, where the market price is falling exogenously with

time due to technological progress. It further assumes income-maximizing

workers, with heterogeneous productivity endowments in both susceptible and

non-susceptible tasks. Their task supply will respond elastically to relative

wage levels, meaning that workers will reallocate their labour supply according

to their comparative advantage as in Roy (1951). With expanding computa-

tional capabilities, resulting from technological advances, and a falling market

price of computing, workers in susceptible tasks will thus reallocate to non-

susceptible tasks.

The above described simple model differs from the task model of Autor,

et al. (2003), in that LNS is not confined to routine labour inputs. This is be-

cause recent developments in ML and MR, building upon big data, allow for

pattern recognition, and thus enable computer capital to rapidly substitute for

labour across a wide range of non-routine tasks. Yet some inhibiting engineer-

ing bottlenecks to computerisation persist. Beyond these bottlenecks, however,

we argue that it is largely already technologically possible to automate almost

any task, provided that sufficient amounts of data are gathered for pattern recog-

nition. Our model thus predicts that the pace at which these bottlenecks can be

overcome will determine the extent of computerisation in the twenty-first cen-

tury.

Hence, in short, while the task model predicts that computers for labour
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substitution will be confined to routine tasks, our model predicts that comput-

erisation can be extended to any non-routine task that is not subject to any engi-

neering bottlenecks to computerisation. These bottlenecks thus set the bound-

aries for the computerisation of non-routine tasks. Drawing upon the ML and

MR literature, and a workshop held at the Oxford University Engineering Sci-

ences Department, we identify several engineering bottlenecks, corresponding

to three task categories. According to these findings, non-susceptible labor in-

puts can be described as,

(2) LNS =

n
∑

i=1

(

LPM,i + LC,i + LSI,i

)

where LPM, LC and LSI are labour inputs into perception and manipulation

tasks, creative intelligence tasks, and and social intelligence tasks.

We note that some related engineering bottlenecks can be partially allevi-

ated by the simplification of tasks. One generic way of achieving this is to re-

duce the variation between task iterations. As a prototypical example, consider

the factory assembly line, turning the non-routine tasks of the artisan shop into

repetitive routine tasks performed by unskilled factory workers. A more recent

example is the computerisation of non-routine manual tasks in construction.

On-site construction tasks typically demand a high degree of adaptability, so

as to accommodate work environments that are typically irregularly laid out,

and vary according to weather. Prefabrication, in which the construction object

is partially assembled in a factory before being transported to the construction

site, provides a way of largely removing the requirement for adaptability. It al-

lows many construction tasks to be performed by robots under controlled con-

ditions that eliminate task variability – a method that is becoming increasingly

widespread, particularly in Japan (Barlow and Ozaki, 2005; Linner and Bock,

2012). The extent of computerisation in the twenty-first century will thus partly

depend on innovative approaches to task restructuring. In the remainder of this

section we examine the engineering bottlenecks related to the above mentioned

task categories, each in turn.

Perception and manipulation tasks. Robots are still unable to match the

depth and breadth of human perception. While basic geometric identification is
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reasonably mature, enabled by the rapid development of sophisticated sensors

and lasers, significant challenges remain for more complex perception tasks,

such as identifying objects and their properties in a cluttered field of view. As

such, tasks that relate to an unstructured work environment can make jobs less

susceptible to computerisation. For example, most homes are unstructured, re-

quiring the identification of a plurality of irregular objects and containing many

cluttered spaces which inhibit the mobility of wheeled objects. Conversely, su-

permarkets, factories, warehouses, airports and hospitals have been designed

for large wheeled objects, making it easier for robots to navigate in perform-

ing non-routine manual tasks. Perception problems can, however, sometimes

be sidestepped by clever task design. For example, Kiva Systems, acquired by

Amazon.com in 2012, solved the problem of warehouse navigation by simply

placing bar-code stickers on the floor, informing robots of their precise location

(Guizzo, 2008).

The difficulty of perception has ramifications for manipulation tasks, and,

in particular, the handling of irregular objects, for which robots are yet to reach

human levels of aptitude. This has been evidenced in the development of robots

that interact with human objects and environments. While advances have been

made, solutions tend to be unreliable over the myriad small variations on a sin-

gle task, repeated thousands of times a day, that many applications require. A

related challenge is failure recovery – i.e. identifying and rectifying the mis-

takes of the robot when it has, for example, dropped an object. Manipula-

tion is also limited by the difficulties of planning out the sequence of actions

required to move an object from one place to another. There are yet further

problems in designing manipulators that, like human limbs, are soft, have com-

pliant dynamics and provide useful tactile feedback. Most industrial manip-

ulation makes uses of workarounds to these challenges (Brown, et al., 2010),

but these approaches are nonetheless limited to a narrow range of tasks. The

main challenges to robotic computerisation, perception and manipulation, thus

largely remain and are unlikely to be fully resolved in the next decade or two

(Robotics-VO, 2013).

Creative intelligence tasks. The psychological processes underlying human

creativity are difficult to specify. According to Boden (2003), creativity is the

ability to come up with ideas or artifacts that are novel and valuable. Ideas, in a
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broader sense, include concepts, poems, musical compositions, scientific theo-

ries, cooking recipes and jokes, whereas artifacts are objects such as paintings,

sculptures, machinery, and pottery. One process of creating ideas (and simi-

larly for artifacts) involves making unfamiliar combinations of familiar ideas,

requiring a rich store of knowledge. The challenge here is to find some reliable

means of arriving at combinations that “make sense.” For a computer to make a

subtle joke, for example, would require a database with a richness of knowledge

comparable to that of humans, and methods of benchmarking the algorithm’s

subtlety.

In principle, such creativity is possible and some approaches to creativity

already exist in the literature. Duvenaud, et al. (2013) provide an example of

automating the core creative task required in order to perform statistics, that

of designing models for data. As to artistic creativity, AARON, a drawing-

program, has generated thousands of stylistically-similar line-drawings, which

have been exhibited in galleries worldwide. Furthermore, David Cope’s EMI

software composes music in many different styles, reminiscent of specific hu-

man composers.

In these and many other applications, generating novelty is not particularly

difficult. Instead, the principal obstacle to computerising creativity is stating

our creative values sufficiently clearly that they can be encoded in an program

(Boden, 2003). Moreover, human values change over time and vary across

cultures. Because creativity, by definition, involves not only novelty but value,

and because values are highly variable, it follows that many arguments about

creativity are rooted in disagreements about value. Thus, even if we could

identify and encode our creative values, to enable the computer to inform and

monitor its own activities accordingly, there would still be disagreement about

whether the computer appeared to be creative. In the absence of engineering

solutions to overcome this problem, it seems unlikely that occupations requiring

a high degree of creative intelligence will be automated in the next decades.

Social intelligence tasks. Human social intelligence is important in a wide

range of work tasks, such as those involving negotiation, persuasion and care.

To aid the computerisation of such tasks, active research is being undertaken

within the fields of Affective Computing (Scherer, et al., 2010; Picard, 2010),

and Social Robotics (Ge, 2007; Broekens, et al., 2009). While algorithms and
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robots can now reproduce some aspects of human social interaction, the real-

time recognition of natural human emotion remains a challenging problem, and

the ability to respond intelligently to such inputs is even more difficult. Even

simplified versions of typical social tasks prove difficult for computers, as is

the case in which social interaction is reduced to pure text. The social intelli-

gence of algorithms is partly captured by the Turing test, examining the ability

of a machine to communicate indistinguishably from an actual human. Since

1990, the Loebner Prize, an annual Turing test competition, awards prizes to

textual chat programmes that are considered to be the most human-like. In

each competition, a human judge simultaneously holds computer-based textual

interactions with both an algorithm and a human. Based on the responses, the

judge is to distinguish between the two. Sophisticated algorithms have so far

failed to convince judges about their human resemblance. This is largely be-

cause there is much ‘common sense’ information possessed by humans, which

is difficult to articulate, that would need to be provided to algorithms if they are

to function in human social settings.

Whole brain emulation, the scanning, mapping and digitalising of a hu-

man brain, is one possible approach to achieving this, but is currently only a

theoretical technology. For brain emulation to become operational, additional

functional understanding is required to recognise what data is relevant, as well

as a roadmap of technologies needed to implement it. While such roadmaps ex-

ist, present implementation estimates, under certain assumptions, suggest that

whole brain emulation is unlikely to become operational within the next decade

or two (Sandberg and Bostrom, 2008). When or if they do, however, the em-

ployment impact is likely to be vast (Hanson, 2001).

Hence, in short, while sophisticated algorithms and developments in MR,

building upon with big data, now allow many non-routine tasks to be auto-

mated, occupa tions that involve complex perception and manipulation tasks,

creative intelligence tasks, and social intelligence tasks are unlikely to be sub-

stituted by computer capital over the next decade or two. The probability of an

occupation being automated can thus be described as a function of these task

characteristics. As suggested by Figure I, the low degree of social intelligence

required by a dishwasher makes this occupation more susceptible to computer-

isation than a public relation specialist, for example. We proceed to examining

the susceptibility of jobs to computerisation as a function of the above described
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FIGURE I. A sketch of how the probability of computerisation might vary as a function of
bottleneck variables.

non-susceptible task characteristics.

IV. MEASURING THE EMPLOYMENT IMPACT OF COMPUTERISATION

IV.A. Data sources and implementation strategy

To implement the above described methodology, we rely on O∗NET, an online

service developed for the US Department of Labor. The 2010 version of O∗NET

contains information on 903 detailed occupations, most of which correspond

closely to the Labor Department’s Standard Occupational Classification (SOC).

The O∗NET data was initially collected from labour market analysts, and has

since been regularly updated by surveys of each occupation’s worker population

and related experts, to provide up-to-date information on occupations as they

evolve over time. For our purposes, an important feature of O∗NET is that it

defines the key features of an occupation as a standardised and measurable set

of variables, but also provides open-ended descriptions of specific tasks to each

occupation. This allows us to: (a) objectively rank occupations according to

the mix of knowledge, skills, and abilities they require; and (b) subjectively

categorise them based on the variety of tasks they involve.

The close SOC correspondence of O∗NET allows us to link occupational

characteristics to 2010 Bureau of Labor Statistics (BLS) employment and wage

data. While the O∗NET occupational classification is somewhat more detailed,

distinguishing between Auditors and Accountants, for example, we aggregate

these occupations to correspond to the six-digit 2010 SOC system, for which

employment and wage figures are reported. To obtain unique O∗NET vari-

ables corresponding to the six-digit SOC classification, we used the mean of
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the O∗NET aggregate. In addition, we exclude any six-digit SOC occupations

for which O∗NET data was missing.20 Doing so, we end up with a final dataset

consisting of 702 occupations.

To assess the employment impact of the described technological devel-

opments in ML, the ideal experiment would provide two identical autarkic

economies, one facing the expanding technological capabilities we observe,

and a secular decline in the price of computerisation, and the other not. By

comparison, it would be straightforward to examine how computerisation re-

shapes the occupational composition of the labour market. In the absence of

this experiment, the second preferred option would be to build on the imple-

mentation strategy of Autor, et al. (2003), and test a simple economic model

to predict how demand for workplace tasks responds to developments in ML

and MR technology. However, because our paper is forward-looking, in the

sense that most of the described technological developments are yet to be im-

plemented across industries on a broader scale, this option was not available for

our purposes.

Instead, our implementation strategy builds on the literature examining the

offshoring of information-based tasks to foreign worksites, consisting of differ-

ent methodologies to rank and categorise occupations according to their sus-

ceptibility to offshoring (Blinder, 2009; Jensen and Kletzer, 2005, 2010). The

common denominator for these studies is that they rely on O∗NET data in differ-

ent ways. While Blinder (2009) eyeballed the O∗NET data on each occupation,

paying particular attention to the job description, tasks, and work activities, to

assign an admittedly subjective two-digit index number of offshorability to each

occupation, Jensen and Kletzer (2005) created a purely objective ranking based

on standardised and measurable O∗NET variables. Both approaches have obvi-

ous drawbacks. Subjective judgments are often not replicable and may result in

the researcher subconsciously rigging the data to conform to a certain set of be-

liefs. Objective rankings, on the other hand, are not subject to such drawbacks,

but are constrained by the reliability of the variables that are being used. At this

stage, it shall be noted that O∗NET data was not gathered to specifically mea-

20The missing occupations consist of “All Other” titles, representing occupations with a
wide range of characteristics which do not fit into one of the detailed O∗NET-SOC occupations.
O∗NET data is not available for this type of title. We note that US employment for the 702
occupations we considered is 138.44 million. Hence our analysis excluded 4.628 million jobs,
equivalent to 3 percent of total employment.
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sure the offshorability or automatability of jobs. Accordingly, Blinder (2009)

finds that past attempts to create objective offshorability rankings using O∗NET

data have yielded some questionable results, ranking lawyers and judges among

the most tradable occupations, while classifying occupations such as data entry

keyers, telephone operators, and billing clerks as virtually impossible to move

offshore.

To work around some of these drawbacks, we combine and build upon the

two described approaches. First, together with a group of ML researchers, we

subjectively hand-labelled 70 occupations, assigning 1 if automatable, and 0

if not. For our subjective assessments, we draw upon a workshop held at the

Oxford University Engineering Sciences Department, examining the automata-

bility of a wide range of tasks. Our label assignments were based on eyeballing

the O∗NET tasks and job description of each occupation. This information is

particular to each occupation, as opposed to standardised across different jobs.

The hand-labelling of the occupations was made by answering the question

“Can the tasks of this job be sufficiently specified, conditional on the availabil-

ity of big data, to be performed by state of the art computer-controlled equip-

ment”. Thus, we only assigned a 1 to fully automatable occupations, where

we considered all tasks to be automatable. To the best of our knowledge, we

considered the possibility of task simplification, possibly allowing some cur-

rently non-automatable tasks to be automated. Labels were assigned only to

the occupations about which we were most confident.

Second, we use objective O∗NET variables corresponding to the defined

bottlenecks to computerisation. More specifically, we are interested in vari-

ables describing the level of perception and manipulation, creativity, and social

intelligence required to perform it. As reported in Table I, we identified nine

variables that describe these attributes. These variables were derived from the

O∗NET survey, where the respondents are given multiple scales, with “impor-

tance” and “level” as the predominant pair. We rely on the “level” rating which

corresponds to specific examples about the capabilities required of computer-

controlled equipment to perform the tasks of an occupation. For instance, in

relation to the attribute “Manual Dexterity”, low (level) corresponds to “Screw

a light bulb into a light socket”; medium (level) is exemplified by “Pack or-

anges in crates as quickly as possible”; high (level) is described as “Perform

open-heart surgery with surgical instruments”. This gives us an indication of
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TABLE I. O∗NET variables that serve as indicators of bottlenecks to computerisation.

Computerisation
bottleneck

O∗NET Variable O∗NET Description

Perception
and
Manipulation

Finger
Dexterity

The ability to make precisely coordinated movements of
the fingers of one or both hands to grasp, manipulate, or
assemble very small objects.

Manual
Dexterity

The ability to quickly move your hand, your hand together
with your arm, or your two hands to grasp, manipulate, or
assemble objects.

Cramped Work Space,
Awkward Positions

How often does this job require working in cramped work
spaces that requires getting into awkward positions?

Creative
Intelligence

Originality The ability to come up with unusual or clever ideas about
a given topic or situation, or to develop creative ways to
solve a problem.

Fine Arts Knowledge of theory and techniques required to compose,
produce, and perform works of music, dance, visual arts,
drama, and sculpture.

Social
Intelligence

Social
Perceptiveness

Being aware of others’ reactions and understanding why
they react as they do.

Negotiation Bringing others together and trying to reconcile
differences.

Persuasion Persuading others to change their minds or behavior.

Assisting and Caring for
Others

Providing personal assistance, medical attention, emo-
tional support, or other personal care to others such as
coworkers, customers, or patients.

the level of “Manual Dexterity” computer-controlled equipment would require

to perform a specific occupation. An exception is the “Cramped work space”

variable, which measures the frequency of unstructured work.

Hence, in short, by hand-labelling occupations, we work around the issue

that O∗NET data was not gathered to specifically measure the automatability of

jobs in a similar manner to Blinder (2009). In addition, we mitigate some of the

subjective biases held by the researchers by using objective O∗NET variables to

correct potential hand-labelling errors. The fact that we label only 70 of the full

702 occupations, selecting those occupations whose computerisation label we

are highly confident about, further reduces the risk of subjective bias affecting

our analysis. To develop an algorithm appropriate for this task, we turn to

probabilistic classification.
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IV.B. Classification method

We begin by examining the accuracy of our subjective assessments of the au-

tomatability of 702 occupations. For classification, we develop an algorithm

to provide the label probability given a previously unseen vector of variables.

In the terminology of classification, the O∗NET variables form a feature vec-

tor, denoted x ∈ R
9. O∗NET hence supplies a complete dataset of 702 such

feature vectors. A computerisable label is termed a class, denoted y ∈ {0, 1}.
For our problem, y = 1 (true) implies that we hand-labelled as computerisable

the occupation described by the associated nine O∗NET variables contained in

x ∈ R
9. Our training data is D = (X, y), where X ∈ R

70×9 is a matrix of

variables and y ∈ {0, 1}70 gives the associated labels. This dataset contains

information about how y varies as a function of x: as a hypothetical example,

it may be the case that, for all occupations for which x1 > 50, y = 1. A

probabilistic classification algorithm exploits patterns existent in training data

to return the probability P (y∗ = 1 | x
∗
, X, y) of a new, unlabelled, test datum

with features x
∗

having class label y∗ = 1.

We achieve probabilistic classification by introducing a latent function

f : x 7→ R, known as a discriminant function. Given the value of the dis-

criminant f∗ at a test point x
∗
, we assume that the probability for the class label

is given by the logistic

(3) P (y∗ = 1 | f∗) =
1

1 + exp(−f∗)
,

and P (y∗ = 0 | f∗) = 1 − P (y∗ = 1 | f∗). For f∗ > 0, y∗ = 1 is more

probable than y∗ = 0. For our application, f can be thought of as a continuous-

valued ‘automatability’ variable: the higher its value, the higher the probability

of computerisation.

We test three different models for the discriminant function, f , using the

best performing for our further analysis. Firstly, logistic (or logit) regression,

which adopts a linear model for f , f(x) = w⊺x, where the un-known weights

w are often inferred by maximising their probability in light of the training

data. This simple model necessarily implies a simple monotonic relationship

between features and the probability of the class taking a particular value.

Richer models are provided by Gaussian process classifiers (Rasmussen and
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Williams, 2006). Such classifiers model the latent function f with a Gaussian

process (GP): a non-parametric probability distribution over functions.

A GP is defined as a distribution over the functions f : X → R such that the

distribution over the possible function values on any finite subset of X (such as

X) is multivariate Gaussian. For a function f(x), the prior distribution over its

values f on a subset x ⊂ X are completely specified by a covariance matrix K

p(f | K) = N (f ; 0, K) =
1√

det 2πK
exp

(

− 1

2
f⊺ K−1 f

)

.(4)

The covariance matrix is generated by a covariance function κ : X × X 7→ R;

that is, K = κ(X,X). The GP model is expressed by the choice of κ; we con-

sider the exponentiated quadratic (squared exponential) and rational quadratic.

Note that we have chosen a zero mean function, encoding the assumption that

P (y∗ = 1) = 1

2
sufficiently far from training data.

Given training dataD, we use the GP to make predictions about the function

values f∗ at input x
∗
. With this information, we have the predictive equations

p(f∗ | x∗
,D) = N

(

f∗;m(f∗ | x∗
,D), V (f∗ | x∗

,D)
)

,(5)

where

m(f∗ | x∗
,D) = K(x

∗
, X)K(X,X)−1y(6)

V (f∗ | x∗
,D) = K(x

∗
, x∗)−K(x

∗
, X)K(X,X)−1K(X, x

∗
) .(7)

Inferring the label posterior p(y∗ | x∗
,D) is complicated by the non-Gaussian

form of the logistic (3). In order to effect inference, we use the approximate

Expectation Propagation algorithm (Minka, 2001).

We tested three Gaussian process classifiers using the GPML toolbox (Ras-

mussen and Nickisch, 2010) on our data, built around exponentiated quadratic,

rational quadratic and linear covariances. Note that the latter is equivalent to

logistic regression with a Gaussian prior taken on the weights w. To validate

these classifiers, we randomly selected a reduced training set of half the avail-

able data D; the remaining data formed a test set. On this test set, we evaluated

how closely the algorithm’s classifications matched the hand labels according

to two metrics (see e.g. Murphy (2012)): the area under the receiver operat-
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TABLE II. Performance of various classifiers; best performances in bold.

classifier model AUC log-likelihood

exponentiated quadratic 0.894 −163.3
rational quadratic 0.893 −163.7
linear (logit regression) 0.827 −205.0

ing characteristic curve (AUC), which is equal to one for a perfect classifier,

and one half for a completely random classifier, and the log-likelihood, which

should ideally be high. This experiment was repeated for one hundred random

selections of training set, and the average results tabulated in Table II. The

exponentiated quadratic model returns (narrowly) the best performance of the

three (clearly outperforming the linear model corresponding to logistic regres-

sion), and was hence selected for the remainder of our testing. Note that its

AUC score of nearly 0.9 represents accurate classification: our algorithm suc-

cessfully managed to reproduce our hand-labels specifying whether an occupa-

tion was computerisable. This means that our algorithm verified that our sub-

jective judgements were systematically and consistently related to the O∗NET

variables.

Having validated our approach, we proceed to use classification to predict

the probability of computerisation for all 702 occupations. For this purpose,

we introduce a new label variable, z, denoting whether an occupation is truly

computerisable or not: note that this can be judged only once an occupation

is computerised, at some indeterminate point in the future. We take, again, a

logistic likelihood,

(8) P (z∗ = 1 | f∗) =
1

1 + exp(−f∗)
.

We implicitly assumed that our hand label, y, is a noise-corrupted version of

the unknown true label, z. Our motivation is that our hand-labels of comput-

erisability must necessarily be treated as such noisy measurements. We thus

acknowledge that it is by no means certain that a job is computerisable given

our labelling. We define X∗ ∈ R
702×9 as the matrix of O∗NET variables for all

702 occupations; this matrix represents our test features.

We perform a final experiment in which, given training data D, consisting
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computerisation; each occupation is a unique point.
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of our 70 hand-labelled occupations, we aim to predict z
∗

for our test features

X∗. This approach firstly allows us to use the features of the 70 occupations

about which we are most certain to predict for the remaining 632. Further, our

algorithm uses the trends and patterns it has learned from bulk data to correct

for what are likely to be mistaken labels. More precisely, the algorithm provides

a smoothly varying probabilistic assessment of automatability as a function of

the variables. For our Gaussian process classifier, this function is non-linear,

meaning that it flexibly adapts to the patterns inherent in the training data. Our

approach thus allows for more complex, non-linear, interactions between vari-

ables: for example, perhaps one variable is not of importance unless the value

of another variable is sufficiently large. We report P (z
∗
| X∗,D) as the prob-

ability of computerisation henceforth (for a detailed probability ranking, see

Appendix). Figure II illustrates that this probability is non-linearly related to

the nine O∗NET variables selected.

V. EMPLOYMENT IN THE TWENTY-FIRST CENTURY

In this section, we examine the possible future extent of at-risk job computerisa-

tion, and related labour market outcomes. The task model predicts that recent

developments in ML will reduce aggregate demand for labour input in tasks

that can be routinised by means of pattern recognition, while increasing the de-

mand for labour performing tasks that are not susceptible to computerisation.

However, we make no attempt to forecast future changes in the occupational

composition of the labour market. While the 2010-2020 BLS occupational em-

ployment projections predict US net employment growth across major occupa-

tions, based on historical staffing patterns, we speculate about technology that

is in only the early stages of development. This means that historical data on

the impact of the technological developments we observe is unavailable.21 We

therefore focus on the impact of computerisation on the mix of jobs that ex-

isted in 2010. Our analysis is thus limited to the substitution effect of future

computerisation.

Turning first to the expected employment impact, reported in Figure III, we

distinguish between high, medium and low risk occupations, depending on their

21It shall be noted that the BLS projections are based on what can be referred to as changes
in normal technological progress, and not on any breakthrough technologies that may be seen
as conjectural.
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probability of computerisation (thresholding at probabilities of 0.7 and 0.3).

According to our estimate, 47 percent of total US employment is in the high risk

category, meaning that associated occupations are potentially automatable over

some unspecified number of years, perhaps a decade or two. It shall be noted

that the probability axis can be seen as a rough timeline, where high probabil-

ity occupations are likely to be substituted by computer capital relatively soon.

Over the next decades, the extent of computerisation will be determined by

the pace at which the above described engineering bottlenecks to automation

can be overcome. Seen from this perspective, our findings could be interpreted

as two waves of computerisation, separated by a “technological plateau”. In

the first wave, we find that most workers in transportation and logistics occu-

pations, together with the bulk of office and administrative support workers,

and labour in production occupations, are likely to be substituted by computer

capital. As computerised cars are already being developed and the declining

cost of sensors makes augmenting vehicles with advanced sensors increasingly

cost-effective, the automation of transportation and logistics occupations is in

line with the technological developments documented in the literature. Fur-

thermore, algorithms for big data are already rapidly entering domains reliant

upon storing or accessing information, making it equally intuitive that office

and administrative support occupations will be subject to computerisation. The

computerisation of production occupations simply suggests a continuation of a

trend that has been observed over the past decades, with industrial robots taking

on the routine tasks of most operatives in manufacturing. As industrial robots

are becoming more advanced, with enhanced senses and dexterity, they will be

able to perform a wider scope of non-routine manual tasks. From a technologi-

cal capabilities point of view, the vast remainder of employment in production

occupations is thus likely to diminish over the next decades.

More surprising, at first sight, is that a substantial share of employment in

services, sales and construction occupations exhibit high probabilities of com-

puterisation. Yet these findings are largely in line with recent documented tech-

nological developments. First, the market for personal and household service

robots is already growing by about 20 percent annually (MGI, 2013). As the

comparative advantage of human labour in tasks involving mobility and dexter-

ity will diminish over time, the pace of labour substitution in service occupa-

tions is likely to increase even further. Second, while it seems counterintuitive
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that sales occupations, which are likely to require a high degree of social intel-

ligence, will be subject to a wave of computerisation in the near future, high

risk sales occupations include, for example, cashiers, counter and rental clerks,

and telemarketers. Although these occupations involve interactive tasks, they

do not necessarily require a high degree of social intelligence. Our model thus

seems to do well in distinguishing between individual occupations within oc-

cupational categories. Third, prefabrication will allow a growing share of con-

struction work to be performed under controlled conditions in factories, which

partly eliminates task variability. This trend is likely to drive the computerisa-

tion of construction work.

In short, our findings suggest that recent developments in ML will put a sub-

stantial share of employment, across a wide range of occupations, at risk in the

near future. According to our estimates, however, this wave of automation will

be followed by a subsequent slowdown in computers for labour substitution,

due to persisting inhibiting engineering bottlenecks to computerisation. The

relatively slow pace of computerisation across the medium risk category of em-

ployment can thus partly be interpreted as a technological plateau, with incre-

mental technological improvements successively enabling further labour sub-

stitution. More specifically, the computerisation of occupations in the medium

risk category will mainly depend on perception and manipulation challenges.

This is evident from Table III, showing that the “manual dexterity”, “finger

dexterity” and “cramped work space” variables exhibit relatively high values

in the medium risk category. Indeed, even with recent technological develop-

ments, allowing for more sophisticated pattern recognition, human labour will

still have a comparative advantage in tasks requiring more complex percep-

tion and manipulation. Yet with incremental technological improvements, the

comparative advantage of human labour in perception and manipulation tasks

could eventually diminish. This will require innovative task restructuring, im-

provements in ML approaches to perception challenges, and progress in robotic

dexterity to overcome manipulation problems related to variation between task

iterations and the handling of irregular objects. The gradual computerisation of

installation, maintenance, and repair occupations, which are largely confined to

the medium risk category, and require a high degree of perception and manipu-

lation capabilities, is a manifestation of this observation.

Our model predicts that the second wave of computerisation will mainly
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TABLE III. Distribution (mean and standard deviation) of values for each variable.

Variable Probability of Computerisation

Low Medium High

Assisting and caring for others 48±20 41±17 34±10
Persuasion 48±7.1 35±9.8 32±7.8
Negotiation 44±7.6 33±9.3 30±8.9
Social perceptiveness 51±7.9 41±7.4 37±5.5
Fine arts 12±20 3.5±12 1.3±5.5
Originality 51±6.5 35±12 32±5.6
Manual dexterity 22±18 34±15 36±14
Finger dexterity 36±10 39±10 40±10
Cramped work space 19±15 37±26 31±20

depend on overcoming the engineering bottlenecks related to creative and so-

cial intelligence. As reported in Table III, the “fine arts”, “originality”, “ne-

gotiation”, “persuasion”, “social perceptiveness”, and “assisting and caring for

others”, variables, all exhibit relatively high values in the low risk category. By

contrast, we note that the “manual dexterity”, “finger dexterity” and “cramped

work space” variables take relatively low values. Hence, in short, generalist oc-

cupations requiring knowledge of human heuristics, and specialist occupations

involving the development of novel ideas and artifacts, are the least suscepti-

ble to computerisation. As a prototypical example of generalist work requir-

ing a high degree of social intelligence, consider the O∗NET tasks reported for

chief executives, involving “conferring with board members, organization offi-

cials, or staff members to discuss issues, coordinate activities, or resolve prob-

lems”, and “negotiating or approving contracts or agreements.” Our predictions

are thus intuitive in that most management, business, and finance occupations,

which are intensive in generalist tasks requiring social intelligence, are largely

confined to the low risk category. The same is true of most occupations in

education, healthcare, as well as arts and media jobs. The O∗NET tasks of ac-

tors, for example, involve “performing humorous and serious interpretations of

emotions, actions, and situations, using body movements, facial expressions,

and gestures”, and “learning about characters in scripts and their relationships

to each other in order to develop role interpretations.” While these tasks are

very different from those of a chief executive, they equally require profound
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knowledge of human heuristics, implying that a wide range of tasks, involv-

ing social intelligence, are unlikely to become subject to computerisation in the

near future.

The low susceptibility of engineering and science occupations to computer-

isation, on the other hand, is largely due to the high degree of creative intelli-

gence they require. The O∗NET tasks of mathematicians, for example, involve

“developing new principles and new relationships between existing mathemat-

ical principles to advance mathematical science” and “conducting research to

extend mathematical knowledge in traditional areas, such as algebra, geometry,

probability, and logic.” Hence, while it is evident that computers are enter-

ing the domains of science and engineering, our predictions implicitly suggest

strong complementarities between computers and labour in creative science and

engineering occupations; although it is possible that computers will fully sub-

stitute for workers in these occupations over the long-run. We note that the

predictions of our model are strikingly in line with the technological trends we

observe in the automation of knowledge work, even within occupational cate-

gories. For example, we find that paralegals and legal assistants – for which

computers already substitute – in the high risk category. At the same time,

lawyers, which rely on labour input from legal assistants, are in the low risk

category. Thus, for the work of lawyers to be fully automated, engineering bot-

tlenecks to creative and social intelligence will need to be overcome, implying

that the computerisation of legal research will complement the work of lawyers

in the medium term.

To complete the picture of what recent technological progress is likely to
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mean for the future of employment, we plot the average median wage of oc-

cupations by their probability of computerisation. We do the same for skill

level, measured by the fraction of workers having obtained a bachelor’s degree,

or higher educational attainment, within each occupation. Figure IV reveals

that both wages and educational attainment exhibit a strong negative relation-

ship with the probability of computerisation. We note that this prediction im-

plies a truncation in the current trend towards labour market polarization, with

growing employment in high and low-wage occupations, accompanied by a

hollowing-out of middle-income jobs. Rather than reducing the demand for

middle-income occupations, which has been the pattern over the past decades,

our model predicts that computerisation will mainly substitute for low-skill and

low-wage jobs in the near future. By contrast, high-skill and high-wage occu-

pations are the least susceptible to computer capital.

Our findings were robust to the choice of the 70 occupations that formed

our training data. This was confirmed by the experimental results tabulated in

Table II: a GP classifier trained on half of the training data was demonstrably

able to accurately predict the labels of the other half, over one hundred different

partitions. That these predictions are accurate for many possible partitions of

the training set suggests that slight modifications to this set are unlikely to lead

to substantially different results on the entire dataset.

V.A. Limitations

It shall be noted that our predictions are based on expanding the premises

about the tasks that computer-controlled equipment can be expected to perform.

Hence, we focus on estimating the share of employment that can potentially be

substituted by computer capital, from a technological capabilities point of view,

over some unspecified number of years. We make no attempt to estimate how

many jobs will actually be automated. The actual extent and pace of comput-

erisation will depend on several additional factors which were left unaccounted

for.

First, labour saving inventions may only be adopted if the access to cheap

labour is scarce or prices of capital are relatively high (Habakkuk, 1962).22 We

22For example, case study evidence suggests that mechanisation in eighteenth century cotton
production initially only occurred in Britain because wage levels were much higher relative to
prices of capital than in other countries (Allen, 2009b). In addition, recent empirical research
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do not account for future wage levels, capital prices or labour shortages. While

these factors will impact on the timeline of our predictions, labour is the scarce

factor, implying that in the long-run wage levels will increase relative to cap-

ital prices, making computerisation increasingly profitable (see, for example,

Acemoglu, 2003).

Second, regulatory concerns and political activism may slow down the pro-

cess of computerisation. The states of California and Nevada are, for example,

currently in the process of making legislatory changes to allow for driverless

cars. Similar steps will be needed in other states, and in relation to various

technologies. The extent and pace of legislatory implementation can further-

more be related to the public acceptance of technological progress.23 Although

resistance to technological progress has become seemingly less common since

the Industrial Revolution, there are recent examples of resistance to technolog-

ical change.24 We avoid making predictions about the legislatory process and

the public acceptance of technological progress, and thus the pace of comput-

erisation.

Third, making predictions about technological progress is notoriously dif-

ficult (Armstrong and Sotala, 2012).25 For this reason, we focus on near-term

technological breakthroughs in ML and MR, and avoid making any predictions

about the number of years it may take to overcome various engineering bot-

tlenecks to computerisation. Finally, we emphasise that since our probability

estimates describe the likelihood of an occupation being fully automated, we

do not capture any within-occupation variation resulting from the computerisa-

tion of tasks that simply free-up time for human labour to perform other tasks.

reveals a causal relationship between the access to cheap labour and mechanisation in agricul-
tural production, in terms of sustained economic transition towards increased mechanisation in
areas characterised by low-wage worker out-migration (Hornbeck and Naidu, 2013).

23For instance, William Huskisson, former cabinet minister and Member of Parliament for
Liverpool, was killed by a steam locomotive during the opening of the Liverpool and Manch-
ester Railway. Nonetheless, this well-publicised incident did anything but dissuade the public
from railway transportation technology. By contrast, airship technology is widely recognised as
having been popularly abandoned as a consequence of the reporting of the Hindenburg disaster.

24Uber, a start-up company connecting passengers with drivers of luxury vehicles, has re-
cently faced pressure from from local regulators, arising from tensions with taxicab services.
Furthermore, in 2011 the UK Government scrapped a 12.7 billion GBP project to introduce
electronic patient records after resistance from doctors.

25Marvin Minsky famously claimed in 1970 that “in from three to eight years we will have
a machine with the general intelligence of an average human being”. This prediction is yet to
materialise.
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Although it is clear that the impact of productivity gains on employment will

vary across occupations and industries, we make no attempt to examine such

effects.

VI. CONCLUSIONS

While computerisation has been historically confined to routine tasks involving

explicit rule-based activities (Autor, et al., 2003; Goos, et al., 2009; Autor and

Dorn, 2013), algorithms for big data are now rapidly entering domains reliant

upon pattern recognition and can readily substitute for labour in a wide range of

non-routine cognitive tasks (Brynjolfsson and McAfee, 2011; MGI, 2013). In

addition, advanced robots are gaining enhanced senses and dexterity, allowing

them to perform a broader scope of manual tasks (IFR, 2012b; Robotics-VO,

2013; MGI, 2013). This is likely to change the nature of work across industries

and occupations.

In this paper, we ask the question: how susceptible are current jobs to these

technological developments? To assess this, we implement a novel methodol-

ogy to estimate the probability of computerisation for 702 detailed occupations.

Based on these estimates, we examine expected impacts of future computeri-

sation on labour market outcomes, with the primary objective of analysing the

number of jobs at risk and the relationship between an occupation’s probability

of computerisation, wages and educational attainment.

We distinguish between high, medium and low risk occupations, depend-

ing on their probability of computerisation. We make no attempt to estimate

the number of jobs that will actually be automated, and focus on potential job

automatability over some unspecified number of years. According to our esti-

mates around 47 percent of total US employment is in the high risk category. We

refer to these as jobs at risk – i.e. jobs we expect could be automated relatively

soon, perhaps over the next decade or two.

Our model predicts that most workers in transportation and logistics occu-

pations, together with the bulk of office and administrative support workers, and

labour in production occupations, are at risk. These findings are consistent with

recent technological developments documented in the literature. More surpris-

ingly, we find that a substantial share of employment in service occupations,

where most US job growth has occurred over the past decades (Autor and Dorn,
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2013), are highly susceptible to computerisation. Additional support for this

finding is provided by the recent growth in the market for service robots (MGI,

2013) and the gradually diminishment of the comparative advantage of human

labour in tasks involving mobility and dexterity (Robotics-VO, 2013).

Finally, we provide evidence that wages and educational attainment exhibit

a strong negative relationship with the probability of computerisation. We note

that this finding implies a discontinuity between the nineteenth, twentieth and

the twenty-first century, in the impact of capital deepening on the relative de-

mand for skilled labour. While nineteenth century manufacturing technologies

largely substituted for skilled labour through the simplification of tasks (Braver-

man, 1974; Hounshell, 1985; James and Skinner, 1985; Goldin and Katz, 1998),

the Computer Revolution of the twentieth century caused a hollowing-out of

middle-income jobs (Goos, et al., 2009; Autor and Dorn, 2013). Our model

predicts a truncation in the current trend towards labour market polarisation,

with computerisation being principally confined to low-skill and low-wage oc-

cupations. Our findings thus imply that as technology races ahead, low-skill

workers will reallocate to tasks that are non-susceptible to computerisation –

i.e., tasks requiring creative and social intelligence. For workers to win the

race, however, they will have to acquire creative and social skills.
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APPENDIX

The table below ranks occupations according to their probability of computeri-

sation (from least- to most-computerisable). Those occupations used as training

data are labelled as either ‘0’ (not computerisable) or ‘1’ (computerisable), re-

spectively. There are 70 such occupations, 10 percent of the total number of

occupations.

Computerisable

Rank Probability Label SOC code Occupation

1. 0.0028 29-1125 Recreational Therapists

2. 0.003 49-1011 First-Line Supervisors of Mechanics, Installers, and Repairers

3. 0.003 11-9161 Emergency Management Directors

4. 0.0031 21-1023 Mental Health and Substance Abuse Social Workers

5. 0.0033 29-1181 Audiologists

6. 0.0035 29-1122 Occupational Therapists

7. 0.0035 29-2091 Orthotists and Prosthetists

8. 0.0035 21-1022 Healthcare Social Workers

9. 0.0036 29-1022 Oral and Maxillofacial Surgeons

10. 0.0036 33-1021 First-Line Supervisors of Fire Fighting and Prevention Workers

11. 0.0039 29-1031 Dietitians and Nutritionists

12. 0.0039 11-9081 Lodging Managers

13. 0.004 27-2032 Choreographers

14. 0.0041 41-9031 Sales Engineers

15. 0.0042 0 29-1060 Physicians and Surgeons

16. 0.0042 25-9031 Instructional Coordinators

17. 0.0043 19-3039 Psychologists, All Other

18. 0.0044 33-1012 First-Line Supervisors of Police and Detectives

19. 0.0044 0 29-1021 Dentists, General

20. 0.0044 25-2021 Elementary School Teachers, Except Special Education

21. 0.0045 19-1042 Medical Scientists, Except Epidemiologists

22. 0.0046 11-9032 Education Administrators, Elementary and Secondary School

23. 0.0046 29-1081 Podiatrists

24. 0.0047 19-3031 Clinical, Counseling, and School Psychologists

25. 0.0048 21-1014 Mental Health Counselors

26. 0.0049 51-6092 Fabric and Apparel Patternmakers

27. 0.0055 27-1027 Set and Exhibit Designers

28. 0.0055 11-3121 Human Resources Managers

29. 0.0061 39-9032 Recreation Workers

30. 0.0063 11-3131 Training and Development Managers

31. 0.0064 29-1127 Speech-Language Pathologists

32. 0.0065 15-1121 Computer Systems Analysts

33. 0.0067 0 11-9151 Social and Community Service Managers

34. 0.0068 25-4012 Curators

35. 0.0071 29-9091 Athletic Trainers

36. 0.0073 11-9111 Medical and Health Services Managers

37. 0.0074 0 25-2011 Preschool Teachers, Except Special Education

38. 0.0075 25-9021 Farm and Home Management Advisors

39. 0.0077 19-3091 Anthropologists and Archeologists
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Computerisable

Rank Probability Label SOC code Occupation

40. 0.0077 25-2054 Special Education Teachers, Secondary School

41. 0.0078 25-2031 Secondary School Teachers, Except Special and Career/Technical Edu-

cation

42. 0.0081 0 21-2011 Clergy

43. 0.0081 19-1032 Foresters

44. 0.0085 21-1012 Educational, Guidance, School, and Vocational Counselors

45. 0.0088 25-2032 Career/Technical Education Teachers, Secondary School

46. 0.009 0 29-1111 Registered Nurses

47. 0.0094 21-1015 Rehabilitation Counselors

48. 0.0095 25-3999 Teachers and Instructors, All Other

49. 0.0095 19-4092 Forensic Science Technicians

50. 0.01 39-5091 Makeup Artists, Theatrical and Performance

51. 0.01 17-2121 Marine Engineers and Naval Architects

52. 0.01 11-9033 Education Administrators, Postsecondary

53. 0.011 17-2141 Mechanical Engineers

54. 0.012 29-1051 Pharmacists

55. 0.012 13-1081 Logisticians

56. 0.012 19-1022 Microbiologists

57. 0.012 19-3032 Industrial-Organizational Psychologists

58. 0.013 27-2022 Coaches and Scouts

59. 0.013 11-2022 Sales Managers

60. 0.014 19-2043 Hydrologists

61. 0.014 11-2021 Marketing Managers

62. 0.014 0 21-1013 Marriage and Family Therapists

63. 0.014 17-2199 Engineers, All Other

64. 0.014 13-1151 Training and Development Specialists

65. 0.014 43-1011 First-Line Supervisors of Office and Administrative Support Workers

66. 0.015 19-1029 Biological Scientists, All Other

67. 0.015 11-2031 Public Relations and Fundraising Managers

68. 0.015 27-1014 Multimedia Artists and Animators

69. 0.015 15-1111 Computer and Information Research Scientists

70. 0.015 0 11-1011 Chief Executives

71. 0.015 0 11-9031 Education Administrators, Preschool and Childcare Center/Program

72. 0.015 27-2041 Music Directors and Composers

73. 0.016 51-1011 First-Line Supervisors of Production and Operating Workers

74. 0.016 41-3031 Securities, Commodities, and Financial Services Sales Agents

75. 0.016 19-1031 Conservation Scientists

76. 0.016 25-2053 Special Education Teachers, Middle School

77. 0.017 17-2041 Chemical Engineers

78. 0.017 11-9041 Architectural and Engineering Managers

79. 0.017 17-2011 Aerospace Engineers

80. 0.018 11-9121 Natural Sciences Managers

81. 0.018 17-2081 Environmental Engineers

82. 0.018 17-1011 Architects, Except Landscape and Naval

83. 0.018 31-2021 Physical Therapist Assistants

84. 0.019 0 17-2051 Civil Engineers

85. 0.02 29-1199 Health Diagnosing and Treating Practitioners, All Other

86. 0.021 19-1013 Soil and Plant Scientists

87. 0.021 19-2032 Materials Scientists
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Computerisable

Rank Probability Label SOC code Occupation

88. 0.021 17-2131 Materials Engineers

89. 0.021 0 27-1022 Fashion Designers

90. 0.021 29-1123 Physical Therapists

91. 0.021 27-4021 Photographers

92. 0.022 27-2012 Producers and Directors

93. 0.022 27-1025 Interior Designers

94. 0.023 29-1023 Orthodontists

95. 0.023 27-1011 Art Directors

96. 0.025 33-1011 First-Line Supervisors of Correctional Officers

97. 0.025 21-2021 Directors, Religious Activities and Education

98. 0.025 17-2072 Electronics Engineers, Except Computer

99. 0.027 19-1021 Biochemists and Biophysicists

100. 0.027 29-1011 Chiropractors

101. 0.028 31-2011 Occupational Therapy Assistants

102. 0.028 21-1021 Child, Family, and School Social Workers

103. 0.028 17-2111 Health and Safety Engineers, Except Mining Safety Engineers and In-

spectors

104. 0.029 17-2112 Industrial Engineers

105. 0.029 53-1031 First-Line Supervisors of Transportation and Material-Moving Machine

and Vehicle Operators

106. 0.029 29-2056 Veterinary Technologists and Technicians

107. 0.03 11-3051 Industrial Production Managers

108. 0.03 17-3026 Industrial Engineering Technicians

109. 0.03 15-1142 Network and Computer Systems Administrators

110. 0.03 15-1141 Database Administrators

111. 0.03 11-3061 Purchasing Managers

112. 0.032 25-1000 Postsecondary Teachers

113. 0.033 19-2041 Environmental Scientists and Specialists, Including Health

114. 0.033 0 21-1011 Substance Abuse and Behavioral Disorder Counselors

115. 0.035 0 23-1011 Lawyers

116. 0.035 27-1012 Craft Artists

117. 0.035 15-2031 Operations Research Analysts

118. 0.035 11-3021 Computer and Information Systems Managers

119. 0.037 27-1021 Commercial and Industrial Designers

120. 0.037 17-2031 Biomedical Engineers

121. 0.037 0 13-1121 Meeting, Convention, and Event Planners

122. 0.038 29-1131 Veterinarians

123. 0.038 27-3043 Writers and Authors

124. 0.039 11-2011 Advertising and Promotions Managers

125. 0.039 19-3094 Political Scientists

126. 0.04 13-2071 Credit Counselors

127. 0.04 19-3099 Social Scientists and Related Workers, All Other

128. 0.041 19-2011 Astronomers

129. 0.041 53-5031 Ship Engineers

130. 0.042 15-1132 Software Developers, Applications

131. 0.042 27-1013 Fine Artists, Including Painters, Sculptors, and Illustrators

132. 0.043 29-2053 Psychiatric Technicians

133. 0.045 0 17-1012 Landscape Architects

134. 0.045 21-1091 Health Educators
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Computerisable

Rank Probability Label SOC code Occupation

135. 0.047 15-2021 Mathematicians

136. 0.047 27-1023 Floral Designers

137. 0.047 11-9013 Farmers, Ranchers, and Other Agricultural Managers

138. 0.048 33-2022 Forest Fire Inspectors and Prevention Specialists

139. 0.049 29-2041 Emergency Medical Technicians and Paramedics

140. 0.055 27-3041 Editors

141. 0.055 29-1024 Prosthodontists

142. 0.055 0 29-9799 Healthcare Practitioners and Technical Workers, All Other

143. 0.057 39-7012 Travel Guides

144. 0.058 29-2061 Licensed Practical and Licensed Vocational Nurses

145. 0.059 19-3041 Sociologists

146. 0.06 23-1022 Arbitrators, Mediators, and Conciliators

147. 0.061 19-1011 Animal Scientists

148. 0.064 39-9041 Residential Advisors

149. 0.066 53-1011 Aircraft Cargo Handling Supervisors

150. 0.066 29-1126 Respiratory Therapists

151. 0.067 27-3021 Broadcast News Analysts

152. 0.069 11-3031 Financial Managers

153. 0.07 17-2161 Nuclear Engineers

154. 0.071 11-9021 Construction Managers

155. 0.074 27-2042 Musicians and Singers

156. 0.075 41-1012 First-Line Supervisors of Non-Retail Sales Workers

157. 0.076 39-1021 First-Line Supervisors of Personal Service Workers

158. 0.077 19-1012 Food Scientists and Technologists

159. 0.08 0 13-1041 Compliance Officers

160. 0.08 33-3031 Fish and Game Wardens

161. 0.082 27-1024 Graphic Designers

162. 0.083 11-9051 Food Service Managers

163. 0.084 0 39-9011 Childcare Workers

164. 0.085 39-9031 Fitness Trainers and Aerobics Instructors

165. 0.091 11-9071 Gaming Managers

166. 0.097 49-9051 Electrical Power-Line Installers and Repairers

167. 0.098 33-3051 Police and Sheriff’s Patrol Officers

168. 0.099 41-3041 Travel Agents

169. 0.1 0 35-1011 Chefs and Head Cooks

170. 0.1 39-2011 Animal Trainers

171. 0.1 27-3011 Radio and Television Announcers

172. 0.1 0 17-2071 Electrical Engineers

173. 0.1 19-2031 Chemists

174. 0.1 29-2054 Respiratory Therapy Technicians

175. 0.1 0 19-2012 Physicists

176. 0.11 0 39-5012 Hairdressers, Hairstylists, and Cosmetologists

177. 0.11 27-3022 Reporters and Correspondents

178. 0.11 53-2021 Air Traffic Controllers

179. 0.13 27-2031 Dancers

180. 0.13 29-2033 Nuclear Medicine Technologists

181. 0.13 15-1133 Software Developers, Systems Software

182. 0.13 13-1111 Management Analysts

183. 0.13 29-2051 Dietetic Technicians
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Computerisable

Rank Probability Label SOC code Occupation

184. 0.13 19-3051 Urban and Regional Planners

185. 0.13 21-1093 Social and Human Service Assistants

186. 0.13 25-3021 Self-Enrichment Education Teachers

187. 0.13 27-4014 Sound Engineering Technicians

188. 0.14 29-1041 Optometrists

189. 0.14 17-2151 Mining and Geological Engineers, Including Mining Safety Engineers

190. 0.14 29-1071 Physician Assistants

191. 0.15 25-2012 Kindergarten Teachers, Except Special Education

192. 0.15 47-2111 Electricians

193. 0.16 17-2171 Petroleum Engineers

194. 0.16 43-9031 Desktop Publishers

195. 0.16 11-1021 General and Operations Managers

196. 0.17 29-9011 Occupational Health and Safety Specialists

197. 0.17 33-2011 Firefighters

198. 0.17 13-2061 Financial Examiners

199. 0.17 47-1011 First-Line Supervisors of Construction Trades and Extraction Workers

200. 0.17 25-2022 Middle School Teachers, Except Special and Career/Technical Educa-

tion

201. 0.18 27-3031 Public Relations Specialists

202. 0.18 49-9092 Commercial Divers

203. 0.18 49-9095 Manufactured Building and Mobile Home Installers

204. 0.18 53-2011 Airline Pilots, Copilots, and Flight Engineers

205. 0.19 25-3011 Adult Basic and Secondary Education and Literacy Teachers and In-

structors

206. 0.2 19-1041 Epidemiologists

207. 0.2 39-4831 Funeral Service Managers, Directors, Morticians, and Undertakers

208. 0.21 15-1179 Information Security Analysts, Web Developers, and Computer Net-

work Architects

209. 0.21 15-2011 Actuaries

210. 0.21 33-9011 Animal Control Workers

211. 0.21 0 39-6012 Concierges

212. 0.22 15-1799 Computer Occupations, All Other

213. 0.22 15-2041 Statisticians

214. 0.22 17-2061 Computer Hardware Engineers

215. 0.23 19-3022 Survey Researchers

216. 0.23 13-1199 Business Operations Specialists, All Other

217. 0.23 13-2051 Financial Analysts

218. 0.23 29-2037 Radiologic Technologists and Technicians

219. 0.23 29-2031 Cardiovascular Technologists and Technicians

220. 0.24 13-1011 Agents and Business Managers of Artists, Performers, and Athletes

221. 0.24 17-3029 Engineering Technicians, Except Drafters, All Other

222. 0.25 19-3092 Geographers

223. 0.25 29-9012 Occupational Health and Safety Technicians

224. 0.25 21-1092 Probation Officers and Correctional Treatment Specialists

225. 0.25 17-3025 Environmental Engineering Technicians

226. 0.25 11-9199 Managers, All Other

227. 0.25 53-3011 Ambulance Drivers and Attendants, Except Emergency Medical Tech-

nicians

228. 0.25 41-4011 Sales Representatives, Wholesale and Manufacturing, Technical and

Scientific Products
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Computerisable

Rank Probability Label SOC code Occupation

229. 0.26 25-2023 Career/Technical Education Teachers, Middle School

230. 0.27 53-5021 Captains, Mates, and Pilots of Water Vessels

231. 0.27 31-2012 Occupational Therapy Aides

232. 0.27 49-9062 Medical Equipment Repairers

233. 0.28 41-1011 First-Line Supervisors of Retail Sales Workers

234. 0.28 0 27-2021 Athletes and Sports Competitors

235. 0.28 39-1011 Gaming Supervisors

236. 0.29 39-5094 Skincare Specialists

237. 0.29 13-1022 Wholesale and Retail Buyers, Except Farm Products

238. 0.3 19-4021 Biological Technicians

239. 0.3 31-9092 Medical Assistants

240. 0.3 0 19-1023 Zoologists and Wildlife Biologists

241. 0.3 35-2013 Cooks, Private Household

242. 0.31 13-1078 Human Resources, Training, and Labor Relations Specialists, All Other

243. 0.31 33-9021 Private Detectives and Investigators

244. 0.31 27-4032 Film and Video Editors

245. 0.33 13-2099 Financial Specialists, All Other

246. 0.34 33-3021 Detectives and Criminal Investigators

247. 0.34 29-2055 Surgical Technologists

248. 0.34 29-1124 Radiation Therapists

249. 0.35 0 47-2152 Plumbers, Pipefitters, and Steamfitters

250. 0.35 0 53-2031 Flight Attendants

251. 0.35 29-2032 Diagnostic Medical Sonographers

252. 0.36 33-3011 Bailiffs

253. 0.36 51-4012 Computer Numerically Controlled Machine Tool Programmers, Metal

and Plastic

254. 0.36 49-2022 Telecommunications Equipment Installers and Repairers, Except Line

Installers

255. 0.37 51-9051 Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders

256. 0.37 53-7061 Cleaners of Vehicles and Equipment

257. 0.37 39-4021 Funeral Attendants

258. 0.37 47-5081 Helpers–Extraction Workers

259. 0.37 27-2011 Actors

260. 0.37 53-7111 Mine Shuttle Car Operators

261. 0.38 49-2095 Electrical and Electronics Repairers, Powerhouse, Substation, and Re-

lay

262. 0.38 1 17-1022 Surveyors

263. 0.38 17-3027 Mechanical Engineering Technicians

264. 0.38 53-7064 Packers and Packagers, Hand

265. 0.38 27-3091 Interpreters and Translators

266. 0.39 31-1011 Home Health Aides

267. 0.39 51-6093 Upholsterers

268. 0.39 47-4021 Elevator Installers and Repairers

269. 0.39 43-3041 Gaming Cage Workers

270. 0.39 25-9011 Audio-Visual and Multimedia Collections Specialists

271. 0.4 0 23-1023 Judges, Magistrate Judges, and Magistrates

272. 0.4 49-3042 Mobile Heavy Equipment Mechanics, Except Engines

273. 0.4 29-2799 Health Technologists and Technicians, All Other

274. 0.41 45-2041 Graders and Sorters, Agricultural Products
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Computerisable

Rank Probability Label SOC code Occupation

275. 0.41 51-2041 Structural Metal Fabricators and Fitters

276. 0.41 1 23-1012 Judicial Law Clerks

277. 0.41 49-2094 Electrical and Electronics Repairers, Commercial and Industrial Equip-

ment

278. 0.42 19-4093 Forest and Conservation Technicians

279. 0.42 53-1021 First-Line Supervisors of Helpers, Laborers, and Material Movers,

Hand

280. 0.43 39-3093 Locker Room, Coatroom, and Dressing Room Attendants

281. 0.43 19-2099 Physical Scientists, All Other

282. 0.43 0 19-3011 Economists

283. 0.44 19-3093 Historians

284. 0.45 51-9082 Medical Appliance Technicians

285. 0.46 43-4031 Court, Municipal, and License Clerks

286. 0.47 13-1141 Compensation, Benefits, and Job Analysis Specialists

287. 0.47 31-1013 Psychiatric Aides

288. 0.47 29-2012 Medical and Clinical Laboratory Technicians

289. 0.48 33-2021 Fire Inspectors and Investigators

290. 0.48 17-3021 Aerospace Engineering and Operations Technicians

291. 0.48 27-1026 Merchandise Displayers and Window Trimmers

292. 0.48 47-5031 Explosives Workers, Ordnance Handling Experts, and Blasters

293. 0.48 15-1131 Computer Programmers

294. 0.49 33-9091 Crossing Guards

295. 0.49 17-2021 Agricultural Engineers

296. 0.49 47-5061 Roof Bolters, Mining

297. 0.49 49-9052 Telecommunications Line Installers and Repairers

298. 0.49 43-5031 Police, Fire, and Ambulance Dispatchers

299. 0.5 53-7033 Loading Machine Operators, Underground Mining

300. 0.5 49-9799 Installation, Maintenance, and Repair Workers, All Other

301. 0.5 23-2091 Court Reporters

302. 0.51 41-9011 Demonstrators and Product Promoters

303. 0.51 31-9091 Dental Assistants

304. 0.52 51-6041 Shoe and Leather Workers and Repairers

305. 0.52 17-3011 Architectural and Civil Drafters

306. 0.53 47-5012 Rotary Drill Operators, Oil and Gas

307. 0.53 47-4041 Hazardous Materials Removal Workers

308. 0.54 39-4011 Embalmers

309. 0.54 47-5041 Continuous Mining Machine Operators

310. 0.54 39-1012 Slot Supervisors

311. 0.54 31-9011 Massage Therapists

312. 0.54 41-3011 Advertising Sales Agents

313. 0.55 49-3022 Automotive Glass Installers and Repairers

314. 0.55 53-2012 Commercial Pilots

315. 0.55 43-4051 Customer Service Representatives

316. 0.55 27-4011 Audio and Video Equipment Technicians

317. 0.56 25-9041 Teacher Assistants

318. 0.57 45-1011 First-Line Supervisors of Farming, Fishing, and Forestry Workers

319. 0.57 19-4031 Chemical Technicians

320. 0.57 47-3015 Helpers–Pipelayers, Plumbers, Pipefitters, and Steamfitters

321. 0.57 1 13-1051 Cost Estimators
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Rank Probability Label SOC code Occupation

322. 0.57 33-3052 Transit and Railroad Police

323. 0.57 37-1012 First-Line Supervisors of Landscaping, Lawn Service, and

Groundskeeping Workers

324. 0.58 13-2052 Personal Financial Advisors

325. 0.59 49-9044 Millwrights

326. 0.59 25-4013 Museum Technicians and Conservators

327. 0.59 47-5042 Mine Cutting and Channeling Machine Operators

328. 0.59 0 11-3071 Transportation, Storage, and Distribution Managers

329. 0.59 49-3092 Recreational Vehicle Service Technicians

330. 0.59 49-3023 Automotive Service Technicians and Mechanics

331. 0.6 33-3012 Correctional Officers and Jailers

332. 0.6 27-4031 Camera Operators, Television, Video, and Motion Picture

333. 0.6 51-3023 Slaughterers and Meat Packers

334. 0.61 49-2096 Electronic Equipment Installers and Repairers, Motor Vehicles

335. 0.61 31-2022 Physical Therapist Aides

336. 0.61 39-3092 Costume Attendants

337. 0.61 1 13-1161 Market Research Analysts and Marketing Specialists

338. 0.61 43-4181 Reservation and Transportation Ticket Agents and Travel Clerks

339. 0.61 51-8031 Water and Wastewater Treatment Plant and System Operators

340. 0.61 19-4099 Life, Physical, and Social Science Technicians, All Other

341. 0.61 51-3093 Food Cooking Machine Operators and Tenders

342. 0.61 51-4122 Welding, Soldering, and Brazing Machine Setters, Operators, and Ten-

ders

343. 0.62 1 53-5022 Motorboat Operators

344. 0.62 47-2082 Tapers

345. 0.62 47-2151 Pipelayers

346. 0.63 19-2042 Geoscientists, Except Hydrologists and Geographers

347. 0.63 49-9012 Control and Valve Installers and Repairers, Except Mechanical Door

348. 0.63 31-9799 Healthcare Support Workers, All Other

349. 0.63 35-1012 First-Line Supervisors of Food Preparation and Serving Workers

350. 0.63 47-4011 Construction and Building Inspectors

351. 0.64 51-9031 Cutters and Trimmers, Hand

352. 0.64 49-9071 Maintenance and Repair Workers, General

353. 0.64 23-1021 Administrative Law Judges, Adjudicators, and Hearing Officers

354. 0.64 43-5081 Stock Clerks and Order Fillers

355. 0.64 51-8012 Power Distributors and Dispatchers

356. 0.64 47-2132 Insulation Workers, Mechanical

357. 0.65 19-4061 Social Science Research Assistants

358. 0.65 51-4041 Machinists

359. 0.65 15-1150 Computer Support Specialists

360. 0.65 25-4021 Librarians

361. 0.65 49-2097 Electronic Home Entertainment Equipment Installers and Repairers

362. 0.65 49-9021 Heating, Air Conditioning, and Refrigeration Mechanics and Installers

363. 0.65 53-7041 Hoist and Winch Operators

364. 0.66 37-2021 Pest Control Workers

365. 0.66 51-9198 Helpers–Production Workers

366. 0.66 43-9111 Statistical Assistants

367. 0.66 37-2011 Janitors and Cleaners, Except Maids and Housekeeping Cleaners

368. 0.66 49-3051 Motorboat Mechanics and Service Technicians
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Rank Probability Label SOC code Occupation

369. 0.67 51-9196 Paper Goods Machine Setters, Operators, and Tenders

370. 0.67 51-4071 Foundry Mold and Coremakers

371. 0.67 19-2021 Atmospheric and Space Scientists

372. 0.67 1 53-3021 Bus Drivers, Transit and Intercity

373. 0.67 33-9092 Lifeguards, Ski Patrol, and Other Recreational Protective Service Work-

ers

374. 0.67 49-9041 Industrial Machinery Mechanics

375. 0.68 43-5052 Postal Service Mail Carriers

376. 0.68 47-5071 Roustabouts, Oil and Gas

377. 0.68 47-2011 Boilermakers

378. 0.68 17-3013 Mechanical Drafters

379. 0.68 29-2021 Dental Hygienists

380. 0.69 1 53-3033 Light Truck or Delivery Services Drivers

381. 0.69 0 37-2012 Maids and Housekeeping Cleaners

382. 0.69 51-9122 Painters, Transportation Equipment

383. 0.7 43-4061 Eligibility Interviewers, Government Programs

384. 0.7 49-3093 Tire Repairers and Changers

385. 0.7 51-3092 Food Batchmakers

386. 0.7 49-2091 Avionics Technicians

387. 0.71 49-3011 Aircraft Mechanics and Service Technicians

388. 0.71 53-2022 Airfield Operations Specialists

389. 0.71 51-8093 Petroleum Pump System Operators, Refinery Operators, and Gaugers

390. 0.71 47-4799 Construction and Related Workers, All Other

391. 0.71 29-2081 Opticians, Dispensing

392. 0.71 51-6011 Laundry and Dry-Cleaning Workers

393. 0.72 39-3091 Amusement and Recreation Attendants

394. 0.72 31-9095 Pharmacy Aides

395. 0.72 47-3016 Helpers–Roofers

396. 0.72 53-7121 Tank Car, Truck, and Ship Loaders

397. 0.72 49-9031 Home Appliance Repairers

398. 0.72 47-2031 Carpenters

399. 0.72 27-3012 Public Address System and Other Announcers

400. 0.73 51-6063 Textile Knitting and Weaving Machine Setters, Operators, and Tenders

401. 0.73 11-3011 Administrative Services Managers

402. 0.73 47-2121 Glaziers

403. 0.73 51-2021 Coil Winders, Tapers, and Finishers

404. 0.73 49-3031 Bus and Truck Mechanics and Diesel Engine Specialists

405. 0.74 49-2011 Computer, Automated Teller, and Office Machine Repairers

406. 0.74 39-9021 Personal Care Aides

407. 0.74 27-4012 Broadcast Technicians

408. 0.74 47-3013 Helpers–Electricians

409. 0.75 11-9131 Postmasters and Mail Superintendents

410. 0.75 47-2044 Tile and Marble Setters

411. 0.75 47-2141 Painters, Construction and Maintenance

412. 0.75 53-6061 Transportation Attendants, Except Flight Attendants

413. 0.75 1 17-3022 Civil Engineering Technicians

414. 0.75 49-3041 Farm Equipment Mechanics and Service Technicians

415. 0.76 25-4011 Archivists

416. 0.76 51-9011 Chemical Equipment Operators and Tenders
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417. 0.76 49-2092 Electric Motor, Power Tool, and Related Repairers

418. 0.76 45-4021 Fallers

419. 0.77 19-4091 Environmental Science and Protection Technicians, Including Health

420. 0.77 49-9094 Locksmiths and Safe Repairers

421. 0.77 37-3013 Tree Trimmers and Pruners

422. 0.77 35-3011 Bartenders

423. 0.77 13-1023 Purchasing Agents, Except Wholesale, Retail, and Farm Products

424. 0.77 1 35-9021 Dishwashers

425. 0.77 0 45-3021 Hunters and Trappers

426. 0.78 31-9093 Medical Equipment Preparers

427. 0.78 51-4031 Cutting, Punching, and Press Machine Setters, Operators, and Tenders,

Metal and Plastic

428. 0.78 43-9011 Computer Operators

429. 0.78 51-8092 Gas Plant Operators

430. 0.79 43-5053 Postal Service Mail Sorters, Processors, and Processing Machine Oper-

ators

431. 0.79 53-3032 Heavy and Tractor-Trailer Truck Drivers

432. 0.79 39-5093 Shampooers

433. 0.79 47-2081 Drywall and Ceiling Tile Installers

434. 0.79 49-9098 Helpers–Installation, Maintenance, and Repair Workers

435. 0.79 49-3052 Motorcycle Mechanics

436. 0.79 51-2011 Aircraft Structure, Surfaces, Rigging, and Systems Assemblers

437. 0.79 45-4022 Logging Equipment Operators

438. 0.79 47-2042 Floor Layers, Except Carpet, Wood, and Hard Tiles

439. 0.8 39-5011 Barbers

440. 0.8 47-5011 Derrick Operators, Oil and Gas

441. 0.81 1 35-2011 Cooks, Fast Food

442. 0.81 43-9022 Word Processors and Typists

443. 0.81 1 17-3012 Electrical and Electronics Drafters

444. 0.81 17-3024 Electro-Mechanical Technicians

445. 0.81 51-9192 Cleaning, Washing, and Metal Pickling Equipment Operators and Ten-

ders

446. 0.81 11-9141 Property, Real Estate, and Community Association Managers

447. 0.81 43-6013 Medical Secretaries

448. 0.81 51-6021 Pressers, Textile, Garment, and Related Materials

449. 0.82 51-2031 Engine and Other Machine Assemblers

450. 0.82 49-2098 Security and Fire Alarm Systems Installers

451. 0.82 49-9045 Refractory Materials Repairers, Except Brickmasons

452. 0.82 39-2021 Nonfarm Animal Caretakers

453. 0.82 1 47-2211 Sheet Metal Workers

454. 0.82 47-2072 Pile-Driver Operators

455. 0.82 47-2021 Brickmasons and Blockmasons

456. 0.83 45-3011 Fishers and Related Fishing Workers

457. 0.83 47-2221 Structural Iron and Steel Workers

458. 0.83 53-4021 Railroad Brake, Signal, and Switch Operators

459. 0.83 53-4031 Railroad Conductors and Yardmasters

460. 0.83 35-2012 Cooks, Institution and Cafeteria

461. 0.83 53-5011 Sailors and Marine Oilers

462. 0.83 51-9023 Mixing and Blending Machine Setters, Operators, and Tenders
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463. 0.83 47-3011 Helpers–Brickmasons, Blockmasons, Stonemasons, and Tile and Mar-

ble Setters

464. 0.83 47-4091 Segmental Pavers

465. 0.83 47-2131 Insulation Workers, Floor, Ceiling, and Wall

466. 0.83 51-5112 Printing Press Operators

467. 0.83 53-6031 Automotive and Watercraft Service Attendants

468. 0.83 47-4071 Septic Tank Servicers and Sewer Pipe Cleaners

469. 0.83 39-6011 Baggage Porters and Bellhops

470. 0.83 41-2012 Gaming Change Persons and Booth Cashiers

471. 0.83 51-4023 Rolling Machine Setters, Operators, and Tenders, Metal and Plastic

472. 0.83 47-2071 Paving, Surfacing, and Tamping Equipment Operators

473. 0.84 51-4111 Tool and Die Makers

474. 0.84 17-3023 Electrical and Electronics Engineering Technicians

475. 0.84 47-2161 Plasterers and Stucco Masons

476. 0.84 51-4192 Layout Workers, Metal and Plastic

477. 0.84 51-4034 Lathe and Turning Machine Tool Setters, Operators, and Tenders, Metal

and Plastic

478. 0.84 33-9032 Security Guards

479. 0.84 51-6052 Tailors, Dressmakers, and Custom Sewers

480. 0.84 53-7073 Wellhead Pumpers

481. 0.84 43-9081 Proofreaders and Copy Markers

482. 0.84 33-3041 Parking Enforcement Workers

483. 0.85 53-7062 Laborers and Freight, Stock, and Material Movers, Hand

484. 0.85 41-4012 Sales Representatives, Wholesale and Manufacturing, Except Technical

and Scientific Products

485. 0.85 1 43-5041 Meter Readers, Utilities

486. 0.85 51-8013 Power Plant Operators

487. 0.85 51-8091 Chemical Plant and System Operators

488. 0.85 47-5021 Earth Drillers, Except Oil and Gas

489. 0.85 19-4051 Nuclear Technicians

490. 0.86 43-6011 Executive Secretaries and Executive Administrative Assistants

491. 0.86 51-8099 Plant and System Operators, All Other

492. 0.86 35-3041 Food Servers, Nonrestaurant

493. 0.86 51-7041 Sawing Machine Setters, Operators, and Tenders, Wood

494. 0.86 53-4041 Subway and Streetcar Operators

495. 0.86 31-9096 Veterinary Assistants and Laboratory Animal Caretakers

496. 0.86 51-9032 Cutting and Slicing Machine Setters, Operators, and Tenders

497. 0.86 41-9022 Real Estate Sales Agents

498. 0.86 1 51-4011 Computer-Controlled Machine Tool Operators, Metal and Plastic

499. 0.86 49-9043 Maintenance Workers, Machinery

500. 0.86 43-4021 Correspondence Clerks

501. 0.87 45-2090 Miscellaneous Agricultural Workers

502. 0.87 45-4011 Forest and Conservation Workers

503. 0.87 51-4052 Pourers and Casters, Metal

504. 0.87 47-2041 Carpet Installers

505. 0.87 47-2142 Paperhangers

506. 0.87 13-1021 Buyers and Purchasing Agents, Farm Products

507. 0.87 51-7021 Furniture Finishers

508. 0.87 35-2021 Food Preparation Workers
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509. 0.87 47-2043 Floor Sanders and Finishers

510. 0.87 1 53-6021 Parking Lot Attendants

511. 0.87 47-4051 Highway Maintenance Workers

512. 0.88 47-2061 Construction Laborers

513. 0.88 43-5061 Production, Planning, and Expediting Clerks

514. 0.88 51-9141 Semiconductor Processors

515. 0.88 17-1021 Cartographers and Photogrammetrists

516. 0.88 51-4051 Metal-Refining Furnace Operators and Tenders

517. 0.88 51-9012 Separating, Filtering, Clarifying, Precipitating, and Still Machine Set-

ters, Operators, and Tenders

518. 0.88 51-6091 Extruding and Forming Machine Setters, Operators, and Tenders, Syn-

thetic and Glass Fibers

519. 0.88 47-2053 Terrazzo Workers and Finishers

520. 0.88 51-4194 Tool Grinders, Filers, and Sharpeners

521. 0.88 49-3043 Rail Car Repairers

522. 0.89 51-3011 Bakers

523. 0.89 1 31-9094 Medical Transcriptionists

524. 0.89 47-2022 Stonemasons

525. 0.89 53-3022 Bus Drivers, School or Special Client

526. 0.89 1 27-3042 Technical Writers

527. 0.89 49-9096 Riggers

528. 0.89 47-4061 Rail-Track Laying and Maintenance Equipment Operators

529. 0.89 51-8021 Stationary Engineers and Boiler Operators

530. 0.89 1 51-6031 Sewing Machine Operators

531. 0.89 1 53-3041 Taxi Drivers and Chauffeurs

532. 0.9 1 43-4161 Human Resources Assistants, Except Payroll and Timekeeping

533. 0.9 29-2011 Medical and Clinical Laboratory Technologists

534. 0.9 47-2171 Reinforcing Iron and Rebar Workers

535. 0.9 47-2181 Roofers

536. 0.9 53-7021 Crane and Tower Operators

537. 0.9 53-6041 Traffic Technicians

538. 0.9 53-6051 Transportation Inspectors

539. 0.9 51-4062 Patternmakers, Metal and Plastic

540. 0.9 51-9195 Molders, Shapers, and Casters, Except Metal and Plastic

541. 0.9 13-2021 Appraisers and Assessors of Real Estate

542. 0.9 53-7072 Pump Operators, Except Wellhead Pumpers

543. 0.9 49-9097 Signal and Track Switch Repairers

544. 0.91 39-3012 Gaming and Sports Book Writers and Runners

545. 0.91 49-9063 Musical Instrument Repairers and Tuners

546. 0.91 39-7011 Tour Guides and Escorts

547. 0.91 49-9011 Mechanical Door Repairers

548. 0.91 51-3091 Food and Tobacco Roasting, Baking, and Drying Machine Operators

and Tenders

549. 0.91 53-7071 Gas Compressor and Gas Pumping Station Operators

550. 0.91 29-2071 Medical Records and Health Information Technicians

551. 0.91 51-9121 Coating, Painting, and Spraying Machine Setters, Operators, and Ten-

ders

552. 0.91 51-4081 Multiple Machine Tool Setters, Operators, and Tenders, Metal and Plas-

tic
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553. 0.91 53-4013 Rail Yard Engineers, Dinkey Operators, and Hostlers

554. 0.91 49-2093 Electrical and Electronics Installers and Repairers, Transportation

Equipment

555. 0.91 35-9011 Dining Room and Cafeteria Attendants and Bartender Helpers

556. 0.91 51-4191 Heat Treating Equipment Setters, Operators, and Tenders, Metal and

Plastic

557. 0.91 19-4041 Geological and Petroleum Technicians

558. 0.91 49-3021 Automotive Body and Related Repairers

559. 0.91 51-7032 Patternmakers, Wood

560. 0.91 51-4021 Extruding and Drawing Machine Setters, Operators, and Tenders, Metal

and Plastic

561. 0.92 43-9071 Office Machine Operators, Except Computer

562. 0.92 29-2052 Pharmacy Technicians

563. 0.92 43-4131 Loan Interviewers and Clerks

564. 0.92 53-7031 Dredge Operators

565. 0.92 41-3021 Insurance Sales Agents

566. 0.92 51-7011 Cabinetmakers and Bench Carpenters

567. 0.92 51-9123 Painting, Coating, and Decorating Workers

568. 0.92 47-4031 Fence Erectors

569. 0.92 51-4193 Plating and Coating Machine Setters, Operators, and Tenders, Metal

and Plastic

570. 0.92 41-2031 Retail Salespersons

571. 0.92 35-3021 Combined Food Preparation and Serving Workers, Including Fast Food

572. 0.92 51-9399 Production Workers, All Other

573. 0.92 47-3012 Helpers–Carpenters

574. 0.93 51-9193 Cooling and Freezing Equipment Operators and Tenders

575. 0.93 51-2091 Fiberglass Laminators and Fabricators

576. 0.93 47-5013 Service Unit Operators, Oil, Gas, and Mining

577. 0.93 53-7011 Conveyor Operators and Tenders

578. 0.93 49-3053 Outdoor Power Equipment and Other Small Engine Mechanics

579. 0.93 53-4012 Locomotive Firers

580. 0.93 53-7063 Machine Feeders and Offbearers

581. 0.93 51-4061 Model Makers, Metal and Plastic

582. 0.93 49-2021 Radio, Cellular, and Tower Equipment Installers and Repairs

583. 0.93 51-3021 Butchers and Meat Cutters

584. 0.93 51-9041 Extruding, Forming, Pressing, and Compacting Machine Setters, Oper-

ators, and Tenders

585. 0.93 53-7081 Refuse and Recyclable Material Collectors

586. 0.93 1 13-2081 Tax Examiners and Collectors, and Revenue Agents

587. 0.93 51-4022 Forging Machine Setters, Operators, and Tenders, Metal and Plastic

588. 0.93 1 53-7051 Industrial Truck and Tractor Operators

589. 0.94 1 13-2011 Accountants and Auditors

590. 0.94 51-4032 Drilling and Boring Machine Tool Setters, Operators, and Tenders,

Metal and Plastic

591. 0.94 43-9051 Mail Clerks and Mail Machine Operators, Except Postal Service

592. 0.94 0 35-3031 Waiters and Waitresses

593. 0.94 51-3022 Meat, Poultry, and Fish Cutters and Trimmers

594. 0.94 13-2031 Budget Analysts

595. 0.94 47-2051 Cement Masons and Concrete Finishers
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596. 0.94 49-3091 Bicycle Repairers

597. 0.94 49-9091 Coin, Vending, and Amusement Machine Servicers and Repairers

598. 0.94 51-4121 Welders, Cutters, Solderers, and Brazers

599. 0.94 1 43-5021 Couriers and Messengers

600. 0.94 43-4111 Interviewers, Except Eligibility and Loan

601. 0.94 35-2015 Cooks, Short Order

602. 0.94 53-7032 Excavating and Loading Machine and Dragline Operators

603. 0.94 47-3014 Helpers–Painters, Paperhangers, Plasterers, and Stucco Masons

604. 0.94 43-4081 Hotel, Motel, and Resort Desk Clerks

605. 0.94 51-9197 Tire Builders

606. 0.94 41-9091 Door-to-Door Sales Workers, News and Street Vendors, and Related

Workers

607. 0.94 37-1011 First-Line Supervisors of Housekeeping and Janitorial Workers

608. 0.94 45-2011 Agricultural Inspectors

609. 0.94 1 23-2011 Paralegals and Legal Assistants

610. 0.95 39-5092 Manicurists and Pedicurists

611. 0.95 43-5111 Weighers, Measurers, Checkers, and Samplers, Recordkeeping

612. 0.95 51-6062 Textile Cutting Machine Setters, Operators, and Tenders

613. 0.95 43-3011 Bill and Account Collectors

614. 0.95 51-8011 Nuclear Power Reactor Operators

615. 0.95 33-9031 Gaming Surveillance Officers and Gaming Investigators

616. 0.95 43-4121 Library Assistants, Clerical

617. 0.95 47-2073 Operating Engineers and Other Construction Equipment Operators

618. 0.95 51-5113 Print Binding and Finishing Workers

619. 0.95 45-2021 Animal Breeders

620. 0.95 51-4072 Molding, Coremaking, and Casting Machine Setters, Operators, and

Tenders, Metal and Plastic

621. 0.95 1 51-2022 Electrical and Electronic Equipment Assemblers

622. 0.95 51-9191 Adhesive Bonding Machine Operators and Tenders

623. 0.95 37-3011 Landscaping and Groundskeeping Workers

624. 0.95 51-4033 Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, Oper-

ators, and Tenders, Metal and Plastic

625. 0.95 43-5051 Postal Service Clerks

626. 0.95 51-9071 Jewelers and Precious Stone and Metal Workers

627. 0.96 43-5032 Dispatchers, Except Police, Fire, and Ambulance

628. 0.96 43-4171 Receptionists and Information Clerks

629. 0.96 43-9061 Office Clerks, General

630. 0.96 11-3111 Compensation and Benefits Managers

631. 0.96 1 43-2011 Switchboard Operators, Including Answering Service

632. 0.96 35-3022 Counter Attendants, Cafeteria, Food Concession, and Coffee Shop

633. 0.96 47-5051 Rock Splitters, Quarry

634. 0.96 43-6014 Secretaries and Administrative Assistants, Except Legal, Medical, and

Executive

635. 0.96 17-3031 Surveying and Mapping Technicians

636. 0.96 51-7031 Model Makers, Wood

637. 0.96 51-6064 Textile Winding, Twisting, and Drawing Out Machine Setters, Opera-

tors, and Tenders

638. 0.96 53-4011 Locomotive Engineers

639. 0.96 1 39-3011 Gaming Dealers
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640. 0.96 49-9093 Fabric Menders, Except Garment

641. 0.96 35-2014 Cooks, Restaurant

642. 0.96 39-3031 Ushers, Lobby Attendants, and Ticket Takers

643. 0.96 43-3021 Billing and Posting Clerks

644. 0.97 53-6011 Bridge and Lock Tenders

645. 0.97 51-7042 Woodworking Machine Setters, Operators, and Tenders, Except Sawing

646. 0.97 51-2092 Team Assemblers

647. 0.97 51-6042 Shoe Machine Operators and Tenders

648. 0.97 51-2023 Electromechanical Equipment Assemblers

649. 0.97 1 13-1074 Farm Labor Contractors

650. 0.97 51-6061 Textile Bleaching and Dyeing Machine Operators and Tenders

651. 0.97 51-9081 Dental Laboratory Technicians

652. 0.97 51-9021 Crushing, Grinding, and Polishing Machine Setters, Operators, and

Tenders

653. 0.97 51-9022 Grinding and Polishing Workers, Hand

654. 0.97 37-3012 Pesticide Handlers, Sprayers, and Applicators, Vegetation

655. 0.97 45-4023 Log Graders and Scalers

656. 0.97 51-9083 Ophthalmic Laboratory Technicians

657. 0.97 1 41-2011 Cashiers

658. 0.97 49-9061 Camera and Photographic Equipment Repairers

659. 0.97 39-3021 Motion Picture Projectionists

660. 0.97 51-5111 Prepress Technicians and Workers

661. 0.97 41-2021 Counter and Rental Clerks

662. 0.97 1 43-4071 File Clerks

663. 0.97 41-9021 Real Estate Brokers

664. 0.97 43-2021 Telephone Operators

665. 0.97 19-4011 Agricultural and Food Science Technicians

666. 0.97 43-3051 Payroll and Timekeeping Clerks

667. 0.97 1 43-4041 Credit Authorizers, Checkers, and Clerks

668. 0.97 35-9031 Hosts and Hostesses, Restaurant, Lounge, and Coffee Shop

669. 0.98 41-9012 Models

670. 0.98 51-9061 Inspectors, Testers, Sorters, Samplers, and Weighers

671. 0.98 43-3031 Bookkeeping, Accounting, and Auditing Clerks

672. 0.98 43-6012 Legal Secretaries

673. 0.98 27-4013 Radio Operators

674. 0.98 53-3031 Driver/Sales Workers

675. 0.98 1 13-1031 Claims Adjusters, Examiners, and Investigators

676. 0.98 41-2022 Parts Salespersons

677. 0.98 1 13-2041 Credit Analysts

678. 0.98 51-4035 Milling and Planing Machine Setters, Operators, and Tenders, Metal

and Plastic

679. 0.98 43-5071 Shipping, Receiving, and Traffic Clerks

680. 0.98 43-3061 Procurement Clerks

681. 0.98 51-9111 Packaging and Filling Machine Operators and Tenders

682. 0.98 51-9194 Etchers and Engravers

683. 0.98 43-3071 Tellers

684. 0.98 27-2023 Umpires, Referees, and Other Sports Officials

685. 0.98 13-1032 Insurance Appraisers, Auto Damage

686. 0.98 1 13-2072 Loan Officers
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687. 0.98 43-4151 Order Clerks

688. 0.98 43-4011 Brokerage Clerks

689. 0.98 43-9041 Insurance Claims and Policy Processing Clerks

690. 0.98 51-2093 Timing Device Assemblers and Adjusters

691. 0.99 1 43-9021 Data Entry Keyers

692. 0.99 25-4031 Library Technicians

693. 0.99 43-4141 New Accounts Clerks

694. 0.99 51-9151 Photographic Process Workers and Processing Machine Operators

695. 0.99 13-2082 Tax Preparers

696. 0.99 43-5011 Cargo and Freight Agents

697. 0.99 49-9064 Watch Repairers

698. 0.99 1 13-2053 Insurance Underwriters

699. 0.99 15-2091 Mathematical Technicians

700. 0.99 51-6051 Sewers, Hand

701. 0.99 23-2093 Title Examiners, Abstractors, and Searchers

702. 0.99 41-9041 Telemarketers
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